甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如表:

从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是 (    )
A.甲B.乙C.丙D.丁
当前题号:1 | 题型:单选题 | 难度:0.99
气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)
①甲地5个数据的中位数为24,众数为22;
②乙地5个数据的中位数为27,总体均值为24;
③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.
则肯定进入夏季的地区有_____
当前题号:2 | 题型:填空题 | 难度:0.99
在对某校高中学生身高的调查中,小明、小华分别独立进行了简单随机抽样调查.小明调查的样本平均数为165.7,样本量为100;小华调查的样本平均数为166.5,样本量为200.下列说法正确的是(   )
A.小华的调查结果比小明的调查结果更接近总体平均数的估计
B.总体平均数一定高于小明调查的样本平均数
C.总体平均数一定低于小华调查的样本平均数
D.总体平均数是确定的数,样本平均数总是在总体平均数附近波动
当前题号:3 | 题型:单选题 | 难度:0.99
下列命题中真命题是(   )
(1)在的二项式展开式中,共有项有理项;
(2)若事件满足,则事件是相互独立事件;
(3)根据最近天某医院新增疑似病例数据,“总体均值为,总体方差为”,可以推测“最近天,该医院每天新增疑似病例不超过人”.
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
当前题号:4 | 题型:单选题 | 难度:0.99
惠州市某学校需要从甲、乙两名学生中选1人参加数学竞赛,抽取了近期两人5次数学考试的分数,统计结果如下表:
 
第一次
第二次
第三次
第四次
第五次

80
85
71
92
87

90
76
75
92
82
 
(1)若从甲、乙两人中选出1人参加数学竞赛,你认为选谁合适?请说明理由.
(2)若数学竞赛分初赛和复赛,在初赛中答题方案如下:
每人从5道备选题中随机抽取3道作答,若至少答对其中2道,则可参加复赛,否则被淘汰.假设被选中参赛的学生只会5道备选题中的3道,求该学生能进人复赛的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
若样本平均数为,总体平均数为,则(   )
A.B.C.的估计值D.的估计值
当前题号:6 | 题型:单选题 | 难度:0.99
甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:82,81,79,78,95,88,93,84
乙:92,95,80,75,83,80,90,85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:
甲地:总体平均数为3,中位数为4;
乙地:总体平均数为1,总体方差大于0;
丙地:总体平均数为2,总体方差为3;
丁地:中位数为2,众数为3;
则甲、乙、两、丁四地中,一定没有发生大规模群体感染的是(   )
A.甲地B.乙地C.丙地D.丁地
当前题号:8 | 题型:单选题 | 难度:0.99
2019年4月20日,辽宁省人民政府公布了“”新高考方案,方案中“2”指的是在思想政治、地理、化学、生物4门中选择2门.“2”中记入高考总分的单科成绩是由原始分转化得到的等级分,学科高考原始分在全省的排名越靠前,等级分越高.小明同学是2018级的学生.已确定了必选地理且不选政治,为确定另选一科,小明收集并整理了生物与化学近10大联考的成绩百分比排名数据x(如的含义是指在该次考试中,成绩高于小明的考生占参加该次考试的考生数的)绘制茎叶图如下.

则由图中数据生物学科联考百分比排名的分位数为________.从平均数的角度来看你认为小明更应该选择________.(填生物或化学)
当前题号:9 | 题型:填空题 | 难度:0.99
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10天,每天新增疑似病例不超过7人”,根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )
A.甲地:总体均值为3,中位数为4
B.乙地:总体均值为1,总体方差大于0
C.丙地:总体均值为2,总体方差为3
D.丁地:中位数为2,众数为3
当前题号:10 | 题型:单选题 | 难度:0.99