某房产销售公司从登记购房的客户中随机选取了50名客户进行调查,按他们购一套房的价格(万元)分成6组:得到频率分布直方图如图所示.用频率估计概率.

房产销售公司每卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):
房价区间






佣金收入
1
2
3
4
5
6
 
(1)求的值;
(2)求房产销售公司卖出一套房的平均佣金;
(3)若该销售公司平均每天销售4套房,请估计公司月(按30天计)利润(利润=总佣金-销售成本).
该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计计算:
月总佣金
不超过100万元的部分
超过100万元至200万元的部分
超过200万元至300万元的部分
超过300万元的部分
销售成本占
佣金比例




 
当前题号:1 | 题型:解答题 | 难度:0.99
某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试,先从这些学生的成绩中随机抽取了50名学生的成绩,按照分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分)

(1)求频率分布直方图中的的值,并估计50名学生的成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表)
(2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数.
当前题号:2 | 题型:解答题 | 难度:0.99
高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:.其中abc成等差数列且.物理成绩统计如表.(说明:数学满分150分,物理满分100分)

分组





频数
6
9
20
10
5
 
(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)根据物理成绩统计表,请估计物理成绩的中位数;
(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.
当前题号:3 | 题型:解答题 | 难度:0.99
人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间内的一个数来表示,该数越接近表示满意度越高.为了解某地区居民的幸福感情况,随机对该地区的男、女居民各人进行了调查,调查数据如表所示:
幸福感指数





男居民人数





女居民人数





 
(1)估算该地区居民幸福感指数的平均值;
(2)若居民幸福感指数不小于,则认为其幸福.为了进一步了解居民的幸福满意度,调查组又在该地区随机抽取对夫妻进行调查,用表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求的期望(以样本的频率作为总体的概率).
当前题号:4 | 题型:解答题 | 难度:0.99
某学校为了了解高一年级学生学习数学的状态,从期中考试成绩中随机抽取50名学生的数学成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)由频率分布直方图,估计这50名学生数学成绩的中位数和平均数(保留到0.01);
(2)该校高一年级共有1000名学生,若本次考试成绩90分以上(含90分)为“优秀”等次,则根据频率分布直方图估计该校高一学生数学成绩达到“优秀”等次的人数.
当前题号:5 | 题型:解答题 | 难度:0.99
已知甲、乙两地生产同一种瓷器,现从两地的瓷器中随机抽取了一共300件统计质量指标值,得到如图的两个统计图,其中甲地瓷器的质量指标值在区间的频数相等.

甲地瓷器质量频率分布直方图  乙地瓷器质量扇形统计图
(1)求直方图中的值,并估计甲地瓷器质量指标值的平均值;(同一组中的数据用区间的中点值作代表)
(2)规定该种瓷器的质量指标值不低于125为特等品,且已知样本中甲地的特等品比乙地的特等品多10个,结合乙地瓷器质量扇形统计图完成下面的列联表,并判断是否有95%的把握认为甲、乙两地的瓷器质量有差异?
 
物等品
非特等品
合计
甲地
 
 
 
乙地
 
 
 
合计
 
 
 
 
附:,其中.

0.10
0.05
0.025
0.01

2.706
3.841
5.024
6.635
 
当前题号:6 | 题型:解答题 | 难度:0.99
如图是一组样本数据的频率分布直方图,则依据图形中的数据,可以估计总体的平均数与中位数分别是(   )
A.B.C.D.
当前题号:7 | 题型:单选题 | 难度:0.99
为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在岁到岁的人群中随机调查了人,并得到如图所示的频率分布直方图,在这人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:
年龄
不支持“延迟退休年龄政策”的人数

15

5

15

23

17
 

(1)由频率分布直方图,估计这人年龄的平均数;(写出必要的表达式)
(2)根据以上统计数据补全下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
 
岁以下
岁以上
总计
不支持
 
 
 
支持
 
 
 
总计
 
 
 
 
附:临界值表、公式

0.15
0.10
0.050
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:

(1)算出第三组的频数.并补全频率分布直方图;
(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)
当前题号:9 | 题型:解答题 | 难度:0.99
某校进行学业水平模拟测试,随机抽取了名学生的数学成绩(满分分),绘制频率分布直方图,成绩低于分的评定为“优秀”.

(1)从该校随机选取一名学生,其数学成绩评定为“优秀”的概率;
(2)估计该校数学平均分(同一组数据用该组区间的中点值作代表).
当前题号:10 | 题型:解答题 | 难度:0.99