- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:

(1)根据频率分布直方图计算该种蔬果日需求量的平均数
(同一组中的数据用该组区间中点值代表);
(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为
公斤
,利润为
元.求
关于
的函数关系式,并结合频率分布直方图估计利润
不小于1750元的概率.

(1)根据频率分布直方图计算该种蔬果日需求量的平均数

(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为






为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:
,
,
,
,
,
,得到如图所示的频率分布直方图.

(1)求
的值;
(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
参考公式及数据:







(1)求

(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
| 优秀 | 非优秀 | 合计 |
男生 | | 40 | |
女生 | | | 50 |
合计 | | | 100 |
参考公式及数据:

![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.

(Ⅰ)求a的值;
(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;
(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).

(Ⅰ)求a的值;
(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;
(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).
《厉害了,我的国》是2018年在我国各影院上映的一部非常火的电影纪录片,该部影片主要讲述了我国近几年的发展现状和成就,影片通过讲述中国故事,刻画中国面貌,弘扬了中国精神,引起了国民的高度关注,上映仅半个月影片票房就突破了3亿元,刷新了我国纪录片的票房纪录,某市一电影院为了解该影院观看《厉害了,我的国》的观众的年龄构成情况,随机抽取了40名观众数据统计如表:
(1)求所调查的40名观众年龄的平均数和中位数;
(2)该电影院决定采用抽奖方式来提升观影人数,将《厉害了,我的国》的电影票票价提高20元/张,并允许购买电影票的观众抽奖3次,中奖1次、2次、3次分别奖现金20元、30元、60元,设观众每次中奖的概率均为
,则观众在3次抽奖中所获得的奖金总额的数学期望是多少元(结果保留整数)?
年龄/岁 | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) |
人数 | 6 | 8 | 12 | 6 | 4 | 2 | 2 |
(1)求所调查的40名观众年龄的平均数和中位数;
(2)该电影院决定采用抽奖方式来提升观影人数,将《厉害了,我的国》的电影票票价提高20元/张,并允许购买电影票的观众抽奖3次,中奖1次、2次、3次分别奖现金20元、30元、60元,设观众每次中奖的概率均为

某学校高一学生有1000名学生参加一次数学小测验,随机抽取200名学生的测验成绩得如图所示的频率分布直方图:

(1)求该学校高一学生随机抽取的200名学生的数学平均成绩
和标准差
(同一组中的数据用该组区间的中点值做代表);
(2)试估计该校高一学生在这一次的数学测验成绩在区间
之内的概率是多少?测验成绩在区间
之外有多少位学生?(参考数据:
)

(1)求该学校高一学生随机抽取的200名学生的数学平均成绩


(2)试估计该校高一学生在这一次的数学测验成绩在区间



从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
(I)在答题卡上作出这些数据的频率分布直方图:

(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:

(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案①:规定每日底薪50元,快递业务每完成一单提成3元;方案②:规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为
,
,
,
,
,
,
七组,整理得到如图所示的频率分布直方图.

(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;
(2)若骑手甲、乙选择了日工资方案①,丙、丁选择了日工资方案②.现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案①的概率;
(3)若从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)








(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;
(2)若骑手甲、乙选择了日工资方案①,丙、丁选择了日工资方案②.现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案①的概率;
(3)若从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)
2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量
单位:
进行了问卷调查,得到如下频率分布直方图:
求频率分布直方图中a的值;
以频率作为概率,试求消费者月饼购买量在
的概率;
已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的
,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求
频率分布直方图中同一组的数据用该组区间的中点值作代表
?










从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图1.

图2
(1)求频率分布直方图中
的值并估计这50户用户的平均用电量;(2)若将用电量在区间
内的用户记为
类用户,标记为低用电家庭,用电量在区间
内的用户记为
类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图2;若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有
的把握认为“满意度与用电量高低有关”?
附表及公式:
,
.

A类用户 | | B类用户 | ||||||
9 | 7 | 7 | 0 | 6 | | | | |
8 | 6 | 5 | 1 | 7 | 8 | 9 | | |
| 9 | 8 | 2 | 8 | 5 | 6 | 7 | 8 |
8 | 7 | 1 | 0 | 9 | 7 | 8 | 9 | |
图2
(1)求频率分布直方图中






| 满意 | 不满意 | 合计 |
![]() | | | |
![]() | | | |
合计 | | | |
附表及公式:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |

