- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标
进行检测,一共抽取了
件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标
有关,具体见下表.
(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标
的平均值(保留两位小数);
(2)用分层抽样的方法从上述样本中先抽取
件产品,再从
件产品中随机抽取
件产品,求这
件产品的指标
都在
内的概率;
(3)已知该厂产品的维护费用为
元/次,工厂现推出一项服务:若消费者在购买该厂产品时每件多加
元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这
件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?



质量指标![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() |
一年内所需维护次数 | ![]() | ![]() | ![]() |
(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标

(2)用分层抽样的方法从上述样本中先抽取






(3)已知该厂产品的维护费用为



某人为了检测自己的解题速度,记录了5次解题所花的时间(单位:分)分别为
,已知这组数据的平均数为55,方差
,则
( )



A.1分 | B.2分 | C.3分 | D.4分 |
甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.得到甲、乙两位学生成绩的茎叶图.

(1)现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为哪位学生的成绩更稳定?请说明理由;
(2)求在甲同学的8次预赛成绩中,从不小于80分的成绩中随机抽取2个成绩,列出所有结果,并求抽出的2个成绩均大于85分的概率.

(1)现要从中选派一人参加数学竞赛,对预赛成绩的平均值和方差进行分析,你认为哪位学生的成绩更稳定?请说明理由;
(2)求在甲同学的8次预赛成绩中,从不小于80分的成绩中随机抽取2个成绩,列出所有结果,并求抽出的2个成绩均大于85分的概率.
某度假酒店为了解会员对酒店的满意度,从中抽取50名会员进行调查,把会员对酒店的“住宿满意度”与“餐饮满意度”都分为五个评分标准:1分(很不满意);2分(不满意);3分(一般);4分(满意);5分(很满意).其统计结果如下表(住宿满意度为
,餐饮满意度为
).

(1)求“住宿满意度”分数的平均数;
(2)求“住宿满意度”为3分时的5个“餐饮满意度”人数的方差;
(3)为提高对酒店的满意度,现从
且
的会员中随机抽取2人征求意见,求至少有1人的“住宿满意度”为2的概率.



(1)求“住宿满意度”分数的平均数;
(2)求“住宿满意度”为3分时的5个“餐饮满意度”人数的方差;
(3)为提高对酒店的满意度,现从


甲乙两名篮球运动员分别在各自不同的5场比赛所得篮板球数的茎叶图如图所示,已知两名运动员在各自5场比赛所得平均篮板球数均为10.

(1)求x,y的值;
(2)求甲乙所得篮板球数的方差
和
,并指出哪位运动员篮板球水平更稳定;
(3)教练员要对甲乙两名运动员篮板球的整体水平进行评估.现在甲乙各自的5场比赛中各选一场进行评估,则两名运动员所得篮板球之和小于18的概率.

(1)求x,y的值;
(2)求甲乙所得篮板球数的方差


(3)教练员要对甲乙两名运动员篮板球的整体水平进行评估.现在甲乙各自的5场比赛中各选一场进行评估,则两名运动员所得篮板球之和小于18的概率.
乡大学生携手回乡创业,他们引进某种果树在家乡进行种植试验.他们分别在五种不同的试验田中种植了这种果树100株并记录了五种不同的试验田中果树的死亡数,得到如下数据:
(Ⅰ)求这五种不同的试验田中果树的平均死亡数;
(Ⅱ)从五种不同的试验田中随机取两种试验田的果树死亡数,记为x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求
的概率.
试验田 | 试验田1 | 试验田2 | 试验田3 | 试验田4 | 试验田5 |
死亡数 | 23 | 32 | 24 | 29 | 17 |
(Ⅰ)求这五种不同的试验田中果树的平均死亡数;
(Ⅱ)从五种不同的试验田中随机取两种试验田的果树死亡数,记为x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求

某工厂的某车间共有
位工人,其中
的人爱好运动。经体检调查,这
位工人的健康指数(百分制)如下茎叶图所示。体检评价标准指出:健康指数不低于
者为“身体状况好”,健康指数低于
者为“身体状况一般”。

(1)根据以上资料完成下面的
列联表,并判断有多大把握认为“身体状况好与爱好运动有关系”?
(2)现将
位工人的健康指数分为如下
组:
,
,
,
,
,其频率分布直方图如图所示。计算该车间中工人的健康指数的平均数,由茎叶图得到真实值记为
,由频率分布直方图得到估计值记为
,求
与
的误差值;
(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于
者中任选
人,设
表示爱好运动的人数,求
的数学期望。
附:
。






(1)根据以上资料完成下面的

| 身体状况好 | 身体状况一般 | 总计 |
爱好运动 | | | |
不爱好运动 | | | |
总计 | | | ![]() |
(2)现将











(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于




附:

![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |