- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若样本
的平均数为10,其方差为2,则对于样本
的下列结论正确的是


A.平均数为20,方差为8 | B.平均数为20,方差为10 |
C.平均数为21,方差为8 | D.平均数为21,方差为10 |
在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图.

(I)若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(II)若从甲的6次模拟测试成绩中随机选择2个,记选出的成绩中超过87分的个数为随机变量ξ,求ξ的分布列和均值.

(I)若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(II)若从甲的6次模拟测试成绩中随机选择2个,记选出的成绩中超过87分的个数为随机变量ξ,求ξ的分布列和均值.
将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示,则5个剩余分数的方差为( )


A.![]() | B.![]() | C.36 | D.![]() |
一个地区某月前两周从星期一至五各天的最低气温依次为
和
,若第一周的平均最低气温为6
,则第二周的平均最低气温为( )



A.6![]() | B.7![]() | C.8![]() | D.9![]() |
甲、乙两人在
天中每天加工的零件的个数用茎叶图表示如下图.中间一列的数字表示零件个数的十位数,两边的数字零件个数的个位数,则这
天中甲、乙两人日加工零件的平均水平_________ 更高.



2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间
(单位:小时)并绘制如图所示的频率分布直方图.

(1)求这200名学生每周阅读时间的样本平均数
和样本方差
(同一组中的数据用该组区间的中间值代表);
(2)由直方图可以认为,目前该校学生每周的阅读时间
服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若
令
,则
,且
.利用直方图得到的正态分布,求
.
(ii)从该高校的学生中随机抽取20名,记
表示这20名学生中每周阅读时间超过10小时的人数,求
(结果精确到0.0001)以及
的数学期望.
参考数据:
.若
,则
.


(1)求这200名学生每周阅读时间的样本平均数


(2)由直方图可以认为,目前该校学生每周的阅读时间






(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若





(ii)从该高校的学生中随机抽取20名,记



参考数据:


