- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品.以北京为例,2018年这几类工作岗位的薪资(单位:万元/月)情况如下表所示.

由表中数据可得各类岗位的薪资水平高低情况为

由表中数据可得各类岗位的薪资水平高低情况为
A.数据挖掘>数据开发>数据产品>数据分析 | B.数据挖掘>数据产品>数据开发>数据分析 |
C.数据挖掘>数据开发>数据分析>数据产品 | D.数据挖掘>数据产品>数据分析>数据开发 |
从两个班级各随机抽取5名学生测量身高(单位:cm),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高
,
及方差
,
的关系为( )




A.![]() ![]() ![]() ![]() ![]() ![]() | B.![]() ![]() ![]() ![]() ![]() ![]() | C.![]() ![]() ![]() ![]() ![]() ![]() | D.![]() ![]() ![]() ![]() ![]() ![]() |
某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.

(1) 依据数据的折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01)(若
,则线性相关程度很高,可用线性回归模型拟合)
(2) 蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?
附:相关系数
,参考数据:
,
,
,

(1) 依据数据的折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01)(若

(2) 蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:
周光照量![]() | ![]() | ![]() | ![]() |
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?
附:相关系数





已知一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,则这组数据的平均数和方差分别为 ( )
A.![]() | B.![]() | C.![]() | D.![]() |
某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:
,
,
,
,则该次英语测试该班的平均成绩是( )






A.68 | B.65 | C.63 | D.70 |
2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.为了更好进行生涯规划,甲同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.

(1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;
(2)试根据茎叶图分析甲同学应在物理和历史中选择哪一门学科?并说明理由;
(3)甲同学发现,其物理考试成绩
(分)与班级平均分
(分)具有线性相关关系,统计数据如下表所示,试求当班级平均分为50分时,其物理考试成绩.

参考数据:
,
,
,
.
参考公式:
,
,
(计算
时精确到
).

(1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;
(2)试根据茎叶图分析甲同学应在物理和历史中选择哪一门学科?并说明理由;
(3)甲同学发现,其物理考试成绩



参考数据:




参考公式:





某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.

(1)求
的值;
(2)分别求出甲、乙两组数据的方差
和
,并由此分析两组技工的加工水平;

(1)求

(2)分别求出甲、乙两组数据的方差


从甲、乙两班各随机抽取10名同学,下面的茎叶图记录了这20名同学在2018年高考语文作文的成绩(单位:分).已知语文作文题目满分为60分,“分数
分,为及格;分数
分,为高分”,且抽取的甲、乙两班的10名同学作文平均分都是44分.

(1)求
的值;
(2)若分别从甲、乙两班随机各抽取1名成绩为高分的学生,请列举出所有的基本事件;并求抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.



(1)求

(2)若分别从甲、乙两班随机各抽取1名成绩为高分的学生,请列举出所有的基本事件;并求抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.
某班的全体学生参加英语测试,成绩的频率分布直方图(如图所示),数据的分组依次为
,
,
,
则该次英语测试该班的平均成绩是( )






A.![]() | B.![]() | C.![]() | D.![]() |