已知某7个数的平均数为3,方差为,现又加入一个新数据3,此时这8个数的平均数为x,方差为,则( )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.
(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润(单位:元)关于当天需求量(单位:瓶,)的函数解析式;
(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5);

(i)若该鲜奶店一天购进30瓶鲜牛奶,求这100天的日利润(单位:元)的平均数;
(ii) 若该鲜奶店一天购进30瓶鲜牛奶,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于100元的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
“中国大能手”是央视推出的一档大型职业技能挑战赛类节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加“中国大能手”职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间(单位:秒)及挑战失败(用“×”表示)的情况如下表1:
序号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

×
96
93
×
92
×
90
86
×
×
83
80
78
77
75

×
95
×
93
×
92
×
88
83
×
82
80
80
74
73
 
据上表中的数据,应用统计软件得下表2:
 
均值(单位:秒)方差
方差
线性回归方程

85
50.2


84
54

 
(1)根据上述回归方程,预测甲、乙分别在下一次完成该项关键技能挑战所用的时间;
(2)若该公司只有一个参赛名额,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.
当前题号:3 | 题型:解答题 | 难度:0.99
“中国大能手”是央视推出的一档大型职业技能挑战赛类节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加“中国大能手”职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间(单位:秒)及挑战失败(用“×”表示)的情况如下表1:
序号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

×
96
93
×
92
×
90
86
×
×
83
80
78
77
75

×
95
×
93
×
92
×
88
83
×
82
80
80
74
73
 
据表1中甲、乙两选手完成该项关键技能挑战成功所用时间的数据,应用统计软件得下表2:
数字特征
均值(单位:秒)方差
方差

85
50.2

84
54
 
(1)在表1中,从选手甲完成挑战用时低于90秒的成绩中,任取2个,求这2个成绩都低于80秒的概率;
(2)若该公司只有一个参赛名额,以该关键技能挑战成绩为标准,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.
当前题号:4 | 题型:解答题 | 难度:0.99
若样本:x1x2x3⋅⋅⋅,xn的平均数为7,方差为6,则对于3x1+1,3x2+1,3x3+1⋅⋅⋅,3xn+1,下列结论正确的是(  )
A.平均数是21,方差是6B.平均数是7,方差是54
C.平均数是22,方差是6D.平均数是22,方差是54
当前题号:5 | 题型:单选题 | 难度:0.99
一次数学知识竞赛中,两组学生成绩如下表:
分数
50
60
70
80
90
100
人数
甲组
2
5
10
13
14
6
乙组
4
4
16
2
12
12
 
已经算得两个组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.
当前题号:6 | 题型:解答题 | 难度:0.99
某校高三文科名学生参加了月份的高考模拟考试,学校为了了解高三文科学生的历史、地理学习情况,从名学生中抽取名学生的成绩进行统计分析,抽出的名学生的地理、历史成绩如下表:
 地理  历史
[80,100]
[60,80)
[40,60)
[80,100]
8
m
9
[60,80)
9
n
9
[40,60)
8
15
7
 
若历史成绩在[80,100]区间的占30%,
(1)求的值;
(2)请根据上面抽出的名学生地理、历史成绩,填写下面地理、历史成绩的频数分布表:
 
[80,100]
[60,80)
[40,60)
地理
 
 
 
历史
 
 
 
 
根据频数分布表中的数据估计历史和地理的平均成绩及方差(同一组数据用该组区间的中点值作代表),并估计哪个学科成绩更稳定.
当前题号:7 | 题型:解答题 | 难度:0.99
一组数据中的每一个数据都乘,再减去,得到一组新数据,若求得新数据的平均数是,方差是,则原来数据的平均数和方差分别是
A.B.
C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
小明在某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前54单没有奖励,超过54单的部分每单奖励20元.

(1)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在时,日平均派送量为单.若将频率视为概率,回答下列问题:
①估计这100天中的派送量指标的平均数(同一组中的数据用该组区间的中点值作代表) ;
②根据以上数据,设每名派送员的日薪为(单位:元),试分别求出甲、乙两种方案的日薪的分布列及数学期望. 请利用数学期望帮助小明分析他选择哪种薪酬方案比较合适?并说明你的理由.
当前题号:9 | 题型:解答题 | 难度:0.99
某同学4次三级跳远成绩(单位:米)分别为,已知这四次成绩的平均数为10,标准差为,则的值为________.
当前题号:10 | 题型:填空题 | 难度:0.99