- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
样本(x1,x2…,xn)的平均数为x,样本(y1,y2,…,ym)的平均数为
.若样本(x1,x2…,xn,y1,y2,…,ym)的平均数
,其中0<α<
,则n,m的大小关系为



A.n<m | B.n>m | C.n=m | D.不能确定 |
某校举行书法比赛,下图为甲乙两人近期
次参加比赛的成绩的茎叶图。如图所示,甲的成绩中有一个数的个位数字模糊,在茎叶图中用
表示。

(1)假设
,求甲的成绩的平均数;
(2)假设数字
的取值是随机的,求乙的平均数高于甲的概率。



(1)假设

(2)假设数字

如图,该茎叶图表示的是甲、乙两人在
次综合测评中的成绩(成绩为整数),其中一个数字被污损,则乙的平均成绩不低于甲的平均成绩的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两名运动员的
次测试成绩如图所示,以这
次测试成绩为判断依据,则甲、乙两名运动员成绩稳定性较差的是__________.(填“甲、乙”)



某企业为了增加某种产品的生产能力,提出甲、乙两个方案.甲方案是废除原有生产线并引进一条新生产线,需一次性投资1000万元,年生产能力为300吨;乙方案是改造原有生产线,需一次性投资700万元,年生产能力为200吨;根据市场调查与预测,该产品的年销售量的频率分布直方图如图所示,无论是引进新生产线还是改造原有生产线,设备的使用年限均为6年,该产品的销售利润为1.5万元/吨.
(Ⅰ)根据年销售量的频率分布直方图,估算年销量的平均数
(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.
(i)根据频率分布直方图估计年销售利润不低于270万的概率;
(ii)以企业6年的净利润的期望值作为决策的依据,试判断该企业应选择哪个方案.(6年的净利润=6年销售利润-投资费用)
(Ⅰ)根据年销售量的频率分布直方图,估算年销量的平均数

(Ⅱ)将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.
(i)根据频率分布直方图估计年销售利润不低于270万的概率;
(ii)以企业6年的净利润的期望值作为决策的依据,试判断该企业应选择哪个方案.(6年的净利润=6年销售利润-投资费用)

2018年9月16日下午5时左右,今年第22号台风“山竹”在广东江门川岛镇附近正面登陆,给当地人民造成了巨大的财产损失,某记者调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成
,
,
,
,
五组,并作出如下频率分布直方图.

(Ⅰ)根据频率分布直方图估计该小区居民由于台风造成的经济损失的众数和平均值.
(Ⅱ)“一方有难,八方支援”,台风后居委会号召小区居民为台风重灾区捐款,
记者调查的100户居民捐款情况如下表格,在如图表格空白处填写正确数字,并说明是否有99%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

参考公式:
,其中






(Ⅰ)根据频率分布直方图估计该小区居民由于台风造成的经济损失的众数和平均值.
(Ⅱ)“一方有难,八方支援”,台风后居委会号召小区居民为台风重灾区捐款,


参考公式:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
2018年9月16日下午5时左右,今年第22号台风“山竹”在广东江门川岛镇附近正面登陆,给当地人民造成了巨大的财产损失,某记者调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成
,
,
,
,
五组,并作出如下频率分布直方图.

(Ⅰ)根据频率分布直方图估计该小区居民由于台风造成的经济损失的众数和平均值.
(Ⅱ)“一方有难,八方支援”,台风后居委会号召小区居民为台风重灾区捐款,
记者调查的100户居民捐款情况如下表格,在表格空白处填写正确数字,并说明是否有99%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

(Ⅲ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过
元的人数为
,若每次抽取的结果是相互独立的,求
的分布列及期望
.
参考公式:
,其中






(Ⅰ)根据频率分布直方图估计该小区居民由于台风造成的经济损失的众数和平均值.
(Ⅱ)“一方有难,八方支援”,台风后居委会号召小区居民为台风重灾区捐款,


(Ⅲ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过




参考公式:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
如图是两组各7名同学体重(单位:
)数据的茎叶图,设1、2两组数据的平均数依次为
和
,标准差依次为
,那么( )(注:标准差







A.![]() |
B.![]() |
C.![]() |
D.![]() |
某校100名学生期中考试数学成绩的频率分布直方图如图.

(1)求图中
的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.

(1)求图中

(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.