某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为

(1)分别求出m,n的值;
(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差,并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于18,则称该车间“质量合格”,求该车间“质量合格”的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
在某校连续次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图.已知甲同学次成绩的平均数为,乙同学次成绩的中位数为,则的值为(   )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:

(1)求的值及这50名同学数学成绩的平均数
(2)该学校为制定下阶段的复习计划,从成绩在的同学中选出3位作为代表进行座谈,若已知成在的同学中男女比例为2:1,求至少有一名女生参加座谈的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
2017年3月2日至16日,全国两会在北京召开,甲、乙两市近5年与会代表名额数统计如图所示,设甲、乙的数据平均数分别为,中位数分别为y1y2,则(  )
A.y1y2B.y1=y2
C.y1=y2D.y1y2
当前题号:4 | 题型:单选题 | 难度:0.99
从某校高中男生中随机选取100名学生,将他们的体重(单位:)数据绘制成频率分布直方图,如图所示.

(1)估计该校的100名同学的平均体重(同一组数据以该组区间的中点值作代表);
(2)若要从体重在内的两组男生中,用分层抽样的方法选取5人,再从这5人中随机抽取3人,记体重在内的人数为,求其分布列和数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
A药店计划从甲,乙两家药厂选择一家购买100件某种中药材,为此A药店从这两家药厂提供的100件该种中药材中随机各抽取10件,以抽取的10件中药材的质量(单位:克》作为样本.样本数据的茎叶图如图所示.己知A药店根据中药材的质量(单位:克)的往定性选择药厂

(1)根据样本数据,A药店应选择哪家药厂购买中药材?
(2)若将抽取的样本分布近似看作总体分布,药店与所选药厂商定中药材的购买价格如下表:
每件中药材的质量(单位:克)
购买价格(单位:元/件)






 
(i)估计药店所购买的件中药材的总质量;
(ii)若药店所购买的件中药材的总费用不超过元.求的最大值.
当前题号:6 | 题型:解答题 | 难度:0.99
甲、乙两位同学连续五次数学检测成绩用茎叶图表示如图所示,甲、乙两人这五次考试的平均数分别为;方差分别是,则有(  )
A.B.
C.D.
当前题号:7 | 题型:单选题 | 难度:0.99
已知一个样本数据x,1,5,其中点是直线和圆的交点,则这个样本的标准差为  
A.5B.2C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
为了调查一款电视机的使用时间,研究人员对该款电视机进行了相应的测试,将得到的数据统计如图所示:

并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如表所示:
 
愿意购买该款电视机
不愿意购买该款电视机
总计
40岁以上
______
______
1000
40岁以下
______
600
______
总计
1200
______
______
 
根据图中的数据,试估计该款电视机的平均使用时间;
根据表中数据,判断是否有的把握认为“愿意购买该款电视机”与“市民的年龄”有关;
用频率估计概率,若在该电视机的生产线上随机抽取4台,记其中使用时间不低于4年的电视机的台数为X,求X的分布列及期望.





k




 
附:
当前题号:9 | 题型:解答题 | 难度:0.99
为了了解人们对“延迟退休年龄政策”的态度,某部门从网年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

(I)由频率分布直方图估计年龄的众数和平均数;

(II)由以上统计数据填2×2列联表,并判断是否有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

参考数据:


(III)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.求抽到的2人中1人是45岁以下,另一人是45岁以上的概率.
当前题号:10 | 题型:解答题 | 难度:0.99