新鲜的荔枝很好吃,但摘下后容易变黑,影响卖相.某大型超市进行扶贫工作,按计划每年六月从精准扶贫户中订购荔枝,每天进货量相同且每公斤20元,售价为每公斤24元,未售完的荔枝降价处理,以每公斤16元的价格当天全部处理完.根据往年情况,每天需求量与当天平均气温有关.如果平均气温不低于25摄氏度,需求量为公斤;如果平均气温位于摄氏度,需求量为公斤;如果平均气温位于摄氏度,需求量为公斤;如果平均气温低于15摄氏度,需求量为公斤.为了确定6月1日到30日的订购数量,统计了前三年6月1日到30日各天的平均气温数据,得到如图所示的频数分布表:
平均气温






天数
2
16
36
25
7
4
 
(Ⅰ)假设该商场在这90天内每天进货100公斤,求这90天荔枝每天为该商场带来的平均利润(结果取整数);
(Ⅱ)若该商场每天进货量为200公斤,以这90天记录的各需求量的频率作为各需求量发生的概率,求当天该商场不亏损的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
已知的取值如下表:

线性相关,且线性回归直线方程为,则=
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
某超市计划销售某种食品,现邀甲、乙两个商家进场试销5天.两个商家提供的返利方案如下:甲商家每天固定返利60元,且每卖出一件食品商家再返利2元;乙商家无固定返利,卖出30件以内(含30件)的食品,每件食品商家返利4元,超出30件的部分每件返利6元.经统计,两个商家的试销情况茎叶图如下:

 

 
9
8
9
2
8  
8    
 
 
 
 
2
2
3
2   
1
1
 
 
(1)现从甲商家试销的5天中抽取两天,求这两天的销售量都小于30的概率;
(2)超市拟在甲、乙两个商家中选择一家长期销售,如果仅从日平均返利额的角度考虑,请利用所学的统计学知识为超市作出选择,并说明理由.
当前题号:3 | 题型:解答题 | 难度:0.99
党的十九大报告指出,要推进绿色发展,倡导“简约知适度、绿色低碳”的生活方式,开展创建“低碳生活,绿色出行”等行动.在这一号召下,越来越多的人秉承“能走不骑,能骑不坐,能坐不开”的出行理念,尽可能采取乘坐公交车骑自行车或步行等方式出行,减少交通拥堵,共建清洁、畅通高效的城市生活环境.某市环保机构随机抽查统计了该市部分成年市民某月骑车次数,统计如下:
次数

人数

年龄






18岁至31岁
8
12
20
60
140
150
32岁至44岁
12
28
20
140
60
150
45岁至59岁
25
50
80
100
225
450
60岁及以上
25
10
10
19
4
2
 
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.
(I)若从被抽查的该月骑车次数在的老年人中随机选出两名幸运者给予奖励,求其中一名幸运者该月骑车次数在之间,另一名幸运者该月骑车次数在之间的概率;
(Ⅱ)用样本估计总体的思想,解决如下问题:
()估计该市在32岁至44岁年龄段的一个青年人每月骑车的平均次数;
() 若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?
参考数据:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:4 | 题型:解答题 | 难度:0.99
将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以表示,则5个剩余分数的方差为________.
当前题号:5 | 题型:填空题 | 难度:0.99
如图,茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则xy的值分别为(  )


 
 
乙组
 
 
9
0
9
 
 
x
2
1
5
y
8
7
4
2
4
 
 
 
A.2,5B.5,5
C.5,8D.8,8
当前题号:6 | 题型:单选题 | 难度:0.99
某校想了解高二数学成绩在学业水平考试中的情况,从中随机抽出人的数学成绩作为样本并进行统计,频率分布表如下表所示.
组号
分组
频数
频率
第1组



第2组



第3组



第4组



第5组



合计


 
(1)据此估计这次参加数学考试的高二学生的数学平均成绩;
(2)从这五组中抽取人进行座谈,若抽取的这人中,恰好有人成绩为分,人成绩为分,人成绩为分,人成绩为分,求这人数学成绩的方差;
(3)从人的样本中,随机抽取测试成绩在内的两名学生,设其测试成绩分别为.
(i)求事件“”的概率;
(ii)求事件“”的概率.
当前题号:7 | 题型:解答题 | 难度:0.99
从某工厂的一个车间抽取某种产品件,产品尺寸(单位:)落在各个小组的频数分布如下表:
数据
分组







频数







 
(1)根据频数分布表,求该产品尺寸落在的概率;
(2)求这件产品尺寸的样本平均数;(同一组中的数据用该组区间的中点值作代表)
(3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值近似为样本方差,经过计算得,利用该正态分布,求.
附:①若随机变量服从正态分布,则;②.
当前题号:8 | 题型:解答题 | 难度:0.99
我校高三8个学生参加数学竞赛的得分用茎叶图表示,其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是(   )
A.91  9.5B.91  9C.92  8.5D.92  8
当前题号:9 | 题型:单选题 | 难度:0.99
经销商第一年购买某工厂商品的单价为(单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:
上一年度

销售额/万元







商品单价/元






 
为了研究该商品购买单价的情况,为此调查并整理了个经销商一年的销售额,得到下面的柱状图.

已知某经销商下一年购买该商品的单价为(单位:元),且以经销商在各段销售额的频率作为概率.
(1)求的平均估计值.
(2)为了鼓励经销商提高销售额,计划确定一个合理的年度销售额(单位:万元),年销售额超过的可以获得红包奖励,该工厂希望使的经销商获得红包,估计的值,并说明理由.
当前题号:10 | 题型:解答题 | 难度:0.99