- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
新鲜的荔枝很好吃,但摘下后容易变黑,影响卖相.某大型超市进行扶贫工作,按计划每年六月从精准扶贫户中订购荔枝,每天进货量相同且每公斤20元,售价为每公斤24元,未售完的荔枝降价处理,以每公斤16元的价格当天全部处理完.根据往年情况,每天需求量与当天平均气温有关.如果平均气温不低于25摄氏度,需求量为
公斤;如果平均气温位于
摄氏度,需求量为
公斤;如果平均气温位于
摄氏度,需求量为
公斤;如果平均气温低于15摄氏度,需求量为
公斤.为了确定6月1日到30日的订购数量,统计了前三年6月1日到30日各天的平均气温数据,得到如图所示的频数分布表:
(Ⅰ)假设该商场在这90天内每天进货100公斤,求这90天荔枝每天为该商场带来的平均利润(结果取整数);
(Ⅱ)若该商场每天进货量为200公斤,以这90天记录的各需求量的频率作为各需求量发生的概率,求当天该商场不亏损的概率.






平均气温 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
(Ⅰ)假设该商场在这90天内每天进货100公斤,求这90天荔枝每天为该商场带来的平均利润(结果取整数);
(Ⅱ)若该商场每天进货量为200公斤,以这90天记录的各需求量的频率作为各需求量发生的概率,求当天该商场不亏损的概率.
某超市计划销售某种食品,现邀甲、乙两个商家进场试销5天.两个商家提供的返利方案如下:甲商家每天固定返利60元,且每卖出一件食品商家再返利2元;乙商家无固定返利,卖出30件以内(含30件)的食品,每件食品商家返利4元,超出30件的部分每件返利6元.经统计,两个商家的试销情况茎叶图如下:
(1)现从甲商家试销的5天中抽取两天,求这两天的销售量都小于30的概率;
(2)超市拟在甲、乙两个商家中选择一家长期销售,如果仅从日平均返利额的角度考虑,请利用所学的统计学知识为超市作出选择,并说明理由.
甲 | | 乙 | ||||||
| 9 | 8 | 9 | 2 | 8 | 8 | | |
| | 2 | 2 | 3 | 2 | 1 | 1 | |
(1)现从甲商家试销的5天中抽取两天,求这两天的销售量都小于30的概率;
(2)超市拟在甲、乙两个商家中选择一家长期销售,如果仅从日平均返利额的角度考虑,请利用所学的统计学知识为超市作出选择,并说明理由.
党的十九大报告指出,要推进绿色发展,倡导“简约知适度、绿色低碳”的生活方式,开展创建“低碳生活,绿色出行”等行动.在这一号召下,越来越多的人秉承“能走不骑,能骑不坐,能坐不开”的出行理念,尽可能采取乘坐公交车骑自行车或步行等方式出行,减少交通拥堵,共建清洁、畅通高效的城市生活环境.某市环保机构随机抽查统计了该市部分成年市民某月骑车次数,统计如下:
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.
(I)若从被抽查的该月骑车次数在
的老年人中随机选出两名幸运者给予奖励,求其中一名幸运者该月骑车次数在
之间,另一名幸运者该月骑车次数在
之间的概率;
(Ⅱ)用样本估计总体的思想,解决如下问题:
(
)估计该市在32岁至44岁年龄段的一个青年人每月骑车的平均次数;
(
) 若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?
参考数据:

![]() 人数 年龄 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
18岁至31岁 | 8 | 12 | 20 | 60 | 140 | 150 |
32岁至44岁 | 12 | 28 | 20 | 140 | 60 | 150 |
45岁至59岁 | 25 | 50 | 80 | 100 | 225 | 450 |
60岁及以上 | 25 | 10 | 10 | 19 | 4 | 2 |
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.
(I)若从被抽查的该月骑车次数在



(Ⅱ)用样本估计总体的思想,解决如下问题:
(

(

参考数据:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以
表示,则5个剩余分数的方差为________.


如图,茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )
甲 | 组 | | | 乙组 | |
| 9 | 0 | 9 | | |
x | 2 | 1 | 5 | y | 8 |
7 | 4 | 2 | 4 | | |
A.2,5 | B.5,5 |
C.5,8 | D.8,8 |
某校想了解高二数学成绩在学业水平考试中的情况,从中随机抽出
人的数学成绩作为样本并进行统计,频率分布表如下表所示.
(1)据此估计这次参加数学考试的高二学生的数学平均成绩;
(2)从这五组中抽取
人进行座谈,若抽取的这
人中,恰好有
人成绩为
分,
人成绩为
分,
人成绩为
分,
人成绩为
分,求这
人数学成绩的方差;
(3)从
人的样本中,随机抽取测试成绩在
内的两名学生,设其测试成绩分别为
,
.
(i)求事件“
”的概率;
(ii)求事件“
”的概率.

组号 | 分组 | 频数 | 频率 |
第1组 | ![]() | ![]() | ![]() |
第2组 | ![]() | ![]() | ![]() |
第3组 | ![]() | ![]() | ![]() |
第4组 | ![]() | ![]() | ![]() |
第5组 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() |
(1)据此估计这次参加数学考试的高二学生的数学平均成绩;
(2)从这五组中抽取











(3)从




(i)求事件“

(ii)求事件“

从某工厂的一个车间抽取某种产品
件,产品尺寸(单位:
)落在各个小组的频数分布如下表:
(1)根据频数分布表,求该产品尺寸落在
的概率;
(2)求这
件产品尺寸的样本平均数
;(同一组中的数据用该组区间的中点值作代表)
(3)根据频数分布对应的直方图,可以认为这种产品尺寸
服从正态分布
,其中
近似为样本平均值
,
近似为样本方差
,经过计算得
,利用该正态分布,求
.
附:①若随机变量
服从正态分布
,则
,
;②
.


数据 分组 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据频数分布表,求该产品尺寸落在

(2)求这


(3)根据频数分布对应的直方图,可以认为这种产品尺寸








附:①若随机变量





我校高三8个学生参加数学竞赛的得分用茎叶图表示,其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是( )


A.91 9.5 | B.91 9 | C.92 8.5 | D.92 8 |
经销商第一年购买某工厂商品的单价为
(单位:元),在下一年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠力度越大,具体情况如下表:
为了研究该商品购买单价的情况,为此调查并整理了
个经销商一年的销售额,得到下面的柱状图.

已知某经销商下一年购买该商品的单价为
(单位:元),且以经销商在各段销售额的频率作为概率.
(1)求
的平均估计值.
(2)为了鼓励经销商提高销售额,计划确定一个合理的年度销售额
(单位:万元),年销售额超过
的可以获得红包奖励,该工厂希望使
的经销商获得红包,估计
的值,并说明理由.

上一年度 销售额/万元 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
商品单价/元 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
为了研究该商品购买单价的情况,为此调查并整理了


已知某经销商下一年购买该商品的单价为

(1)求

(2)为了鼓励经销商提高销售额,计划确定一个合理的年度销售额



