- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
每年暑期都会有大量中学生参加名校游学,夏令营等活动,某中学学生社团将其今年的社会实践主题定为“中学生暑期游学支出分析”,并在该市各个中学随机抽取了共
名中学生进行问卷调查,根据问卷调查发现共
名中学生参与了各类游学、夏令营等活动,从中统计得到中学生暑期游学支出(单位:百元)频率分布方图如图.

(I)求实数
的值;
(Ⅱ)在
,
,
三组中利用分层抽样抽取
人,并从抽取的
人中随机选出
人,对其消费情况进行进一步分析.
(i)求每组恰好各被选出
人的概率;
(ii)设
为选出的
人中
这一组的人数,求随机变量
的分布列和数学期望.



(I)求实数

(Ⅱ)在






(i)求每组恰好各被选出

(ii)设




节能减排以来,兰州市100户居民的月平均用电量
单位:度
,以
分组的频率分布直方图如图.

求直方图中x的值;
求月平均用电量的众数和中位数;
估计用电量落在
中的概率是多少?








我市准备实施天然气价格阶梯制,现提前调查市民对天然气价格阶梯制的态度,随机抽查了
名市民,现将调查情况整理成了被调查者的频率分布直方图(如图)和赞成者的频数表如下:

(1)若从年龄在
,
的被调查者中各随机选取
人进行调查,求所选取的
人中至少有
人对天然气价格阶梯制持赞成态度的概率;
(2)若从年龄在
,
的被调查者中各随机选取
人进行调查,记选取的
人中对天然气价格实施阶梯制持不赞成态度的人数为
,求随机变量
的分布列和数学期望.

年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
赞成人数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |

(1)若从年龄在





(2)若从年龄在






某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各随机抽取了100件产品作为样本来检测一项质量指标值,若产品的该项质量指标值落在
内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图是乙套设备的样本的频率分布直方图.

表甲套设备的样本的频数分布表
(1)将频率视为概率.若乙套设备生产了10000件产品,则其中的合格品约有多少件?
(2)填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下,认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
附表及公式:
,其中
;


表甲套设备的样本的频数分布表
质量指标值 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 2 | 10 | 36 | 38 | 12 | 2 |
(1)将频率视为概率.若乙套设备生产了10000件产品,则其中的合格品约有多少件?
(2)填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下,认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
| 甲套设备 | 乙套设备 | 合计 |
合格品 | | | |
不合格品 | | | |
合计 | | | |
附表及公式:


![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议,为调查该校学生每周平均体育运动时间的情况,从高一高二(非毕业年级)与高三(毕业年级)共三个年级学生中按照
的比例分层抽样,收集
位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图.(已知高一年级共有
名学生)

(1)据图估计该校学生每周平均体育运动时间,并估计高一年级每周平均体育运动时间不足
小时的人数;
(2)规定每周平均体育运动时间不少于
小时记为“优秀”,否则为“非优秀”,在样本数据中,有
位高三学生的每周平均体育运动时间不少于
小时,请完成下列
列联表,并判断是否有
的把握认为“该校学生的每周平均体育运动时间是否优秀与毕业年级有关”?
附:
.
参考数据:




(1)据图估计该校学生每周平均体育运动时间,并估计高一年级每周平均体育运动时间不足

(2)规定每周平均体育运动时间不少于





| 非毕业年级 | 毕业年级 | 合计 |
优秀 | | | |
非优秀 | | | |
合计 | | | ![]() |
附:

参考数据:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.

(1)分别求出
的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

组别 | 分组 | 回答正确的人数 | 回答正确的人数占本组的概率 |
第1组 | [15,25) | 5 | 0.5 |
第2组 | [25,35) | ![]() | 0.9 |
第3组 | [35,45) | 27 | ![]() |
第4组 | [45,55) | ![]() | 0.36 |
第5组 | [55,65) | 3 | ![]() |
(1)分别求出

(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在
内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.
表1:甲套设备的样本的频数分布表
图1:乙套设备的样本的频率分布直方图

(1)根据表1和图1,通过计算合格率对两套设备的优劣进行比较;
(2)填写下面列联表,并根据列联表判断是否有
的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
附:
参考公式:
,其中
.

表1:甲套设备的样本的频数分布表
质量指标值 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 1 | 5 | 18 | 19 | 6 | 1 |
图1:乙套设备的样本的频率分布直方图

(1)根据表1和图1,通过计算合格率对两套设备的优劣进行比较;
(2)填写下面列联表,并根据列联表判断是否有

| 甲套设备 | 乙套设备 | 合计 |
合格品 | | | |
不合格品 | | | |
合计 | | | |
附:
![]() | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:


某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额
元)、专业二等奖学金(奖金额
元)及专业三等奖学金(奖金额
元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校
年
名学生周课外平均学习时间频率分布直方图,图(2)是这
名学生在
年周课外平均学习时间段获得专业奖学金的频率柱状图.

(Ⅰ)求这
名学生中获得专业三等奖学金的人数;
(Ⅱ)若周课外平均学习时间超过
小时称为“努力型”学生,否则称为“非努力型”学生,列
联表并判断是否有
的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?
(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生
年获得的专业奖学金额为随机变量
,求随机变量
的分布列和期望.









(Ⅰ)求这

(Ⅱ)若周课外平均学习时间超过



(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生





某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.则获得复赛资格的人数为()


A.640 | B.520 | C.280 | D.240 |
“中国人均读书
本(包括网络文学和教科书),比韩国的
本、法国的
本、日本的
本、犹太人的
本少得多,是世界上人均读书最少的国家”,这个论断被各种媒体反复引用.出现这样统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天
名读书者进行调查,将他们的年龄分成
段:
,
,
,
,
,
后得到如图所示的频率分布直方图.问:

(1)估计在这
名读书者中年龄分布在
的人数;
(2)求这
名读书者年龄的平均数和中位数;
(3)若从年龄在
的读书者中任取
名,求这两名读书者年龄在
的人数恰为
的概率.














(1)估计在这


(2)求这

(3)若从年龄在



