- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了了解某省各景区在大众中的熟知度,随机从本省
岁的人群中抽取了
人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家
级旅游景区?”,统计结果如下表所示:

(1)分别求出
的值;
(2)从第
组回答正确的人中用分层抽样的方法抽取
人,求第
组每组抽取的人数;
(3)在(2)中抽取的
人中随机抽取
人,求所抽取的人中恰好没有年龄段在
的概率



组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的频率 |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |

(1)分别求出

(2)从第



(3)在(2)中抽取的



在样本频率分布直方图中,共有5个小长方形,已知中间小长方形的面积是其余4个小长方形面积之和的
,且中间一组的频数为10,则这个样本的容量是( ).

A.20 | B.30 | C.40 | D.50 |
我国是世界上严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准:(单位:吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全布市民用用水量分布情况,通过袖样,获得了100位居民某年的月用水量(单位:吨),将数据按照
……
分成9组,制成了如图所示的频率分布直方图

(1)求频率分布直方图中
的值;
(2)若该市政府看望使85%的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由。





(1)求频率分布直方图中

(2)若该市政府看望使85%的居民每月的用水量不超过标准


为了解学生课外阅读的情况,随机统计了
名学生的课外阅读时间,所得数据都在
中,其频率分布直方图如图所示,若在
中的频数为100,则
值为________.





某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组
,
,第二组
,
,
第八组
,
,如图是按上述分组方法得到的频率分布直方图的一部分.
(1)求第七组的频率,并完成频率分布直方图;
(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);
(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.







(1)求第七组的频率,并完成频率分布直方图;
(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);
(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.

对一批产品的质量(单位:克)进行抽样检测,样本容量为1600,检测结果的频率分布直方图如图所示.根据标准,单件产品质量在区间[25,30)内为一等品,在区间[15,20),[20,25)和[30,35)内为二等品,其余为三等品.则样本中三等品件数为_______.

某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100〕,则图中x的值为_______
