- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂对一批产品进行抽样检测,根据抽样检测后得产品净重(单位:克)数据绘制的频率分布直方图如图所示,已知产品净重的范围是区间
,样本中净重在区间
的产品个数是24,则样本中净重在区间
的产品个数是________




过去大多数人采用储蓄的方式将钱储蓄起来,以保证自己生活的稳定,考虑到通货膨胀的压力,如果我们把所有的钱都用来储蓄,这并不是一种很好的方式,随着金融业的发展,普通人能够使用的投资理财工具也多了起来,为了研究某种理财工具的使用情况,现对
年龄段的人员进行了调查研究,将各年龄段人数分成5组:
,
,
,
,
,并整理得到频率分布直方图:

(1)求图中的a值;
(2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,则三个组中,各抽取多少人;
(3)由频率分布直方图,求所有被调查人员的平均年龄.







(1)求图中的a值;
(2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,则三个组中,各抽取多少人;
(3)由频率分布直方图,求所有被调查人员的平均年龄.
某学校为了了解住校学生每天在校平均开销情况,随机抽取了
名学生,他们的每天在校平均开销都不低于20元且不超过60元,其频率分布直方图如图三所示,则其中每天在校平均开销在
元的学生人数为_________ .



某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:
,并整理得到频率分布直方图(如图所示).

(Ⅰ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间
内的人数.
(Ⅱ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.


(Ⅰ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间

(Ⅱ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
用2×10﹣3 mol的KXO4 恰好将30mL,0.1mol/L的Na2SO3溶液氧化为Na2SO4,则元素X在还原产物中的化合价是( )
2014年12月19日,2014年中国数学奥林匹克竞赛(第30届全国中学生数学冬令营)在重庆市巴蜀中学举行.参加本届中国数学奥林匹克竞赛共有来自各省、市(自治区、直辖市)、香港地区、澳门地区,以及俄罗斯、新加坡等国的30余支代表队,共317名选手.竞赛为期2天,每天3道题,限时4个半小时完成.部分优胜者将参加为国际数学奥林匹克竞赛而组建的中国国家集训队.中国数学奥林匹克竞赛(全国中学生数学冬令营)是在全国高中数学联赛基础上进行的一次较高层次的数学竞赛,该项活动也是中国中学生级别最高、规模最大、最有影响的全国性数学竞赛.2020年第29届全国中学生生物学竞赛也将在重庆巴蜀中学举行.巴蜀中学校本选修课“数学建模”兴趣小组调查了2019年参加全国生物竞赛的200名学生(其中男生、女生各100人)的成绩,得到这200名学生成绩的中位数为78.这200名学生成绩均在50与110之间,且成绩在
内的人数为30,这200名学生成绩的高于平均数的男生有62名,女生有38名.并根据调查结果画出如图所示的频率分布直方图.

(1)求
,
的值;
(2)填写下表,能否有
的把握认为学生成绩是否高于平均数与性别有关系?
参考公式及数据:
,其中
.


(1)求


(2)填写下表,能否有

| 男生 | 女生 | 总计 |
成绩不高于平均数 | | | |
成绩高于平均数 | | | |
总计 | | | |
参考公式及数据:


![]() | 0.05 | 0.01 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |
在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在
内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.

(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;
(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为
,假设每名选手能否通过复活赛相互独立,现有3名选手进入复活赛,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.


(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;
(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为

为了了解高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.

(1)求第二小组的频率;
(2)求样本容量;
(3)若次数在110以上为达标,试估计全体高一学生的达标率为多少?

(1)求第二小组的频率;
(2)求样本容量;
(3)若次数在110以上为达标,试估计全体高一学生的达标率为多少?