某班所有学生某次数学考试的得分均在区间[90, 140]内,其频率分布直方图如右图所示,若前4 组的频率依次成等差数列,则实数
A.0.02B.0.024
C.0.028D.0.03
当前题号:1 | 题型:单选题 | 难度:0.99
随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,没售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了130吨该商品,现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.

(Ⅰ)视分布在各区间内的频率为相应的概率,求
(Ⅱ)将表示为的函数,求出该函数表达式;
(Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值)代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如,则取的概率等于市场需求量落入的频率),求的分布列及数学期望
当前题号:2 | 题型:解答题 | 难度:0.99
某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出盒该产品获利润元,未售出的产品,每盒亏损元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

(1)根据直方图估计这个开学季内市场需求量的众数和平均数;
(2)将表示为的函数;
(3)根据直方图估计利润不少于元的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
惠州市某商店销售某海鲜,经理统计了春节前后50天该海鲜的日需求量,单位:公斤),其频率分布直方图如下图所示.该海鲜每天进货1次,每销售1公斤可获利40元;若供大于求,剩余的海鲜削价处理,削价处理的海鲜每公斤亏损10元;若供不应求,可从其它商店调拨,调拨的海鲜销售1公斤可获利30元.假设商店该海鲜每天的进货量为14公斤,商店销售该海鲜的日利润为元.

(1)求商店日利润关于日需求量的函数表达式.
(2)根据频率分布直方图,
①估计这50天此商店该海鲜日需求量的平均数.
②假设用事件发生的频率估计概率,请估计日利润不少于620元的概率.
当前题号:4 | 题型:解答题 | 难度:0.99
某公司准备投产一种新产品,经测算,已知每年生产万件的该种产品所需要的总成本(万元),依据产品尺寸,产品的品质可能出现优、中、差三种情况,随机抽取了1000件产品测量尺寸,尺寸分别在(单位:)中,经统计得到的频率分布直方图如图所示.

产品的品质情况和相应的价格(元/件)与年产量之间的函数关系如下表所示.
产品品质
立品尺寸的范围
价格与产量的函数关系式









 
以频率作为概率解决如下问题:
(1)求实数的值;
(2)当产量确定时,设不同品质的产品价格为随机变量,求随机变量的分布列;
(3)估计当年产量为何值时,该公司年利润最大,并求出最大值.
当前题号:5 | 题型:解答题 | 难度:0.99