- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某超市从
年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取
个,并按
、
、
、
、
分组,得到频率分布直方图如图,假设甲、乙两种酸奶独立销售且日销售量相互独立.

(1)写出频率分布直方图甲中的
的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为
、
,试比较
与
的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于
箱且另一个不高于
箱的概率;
(3)设
表示在未来
天内甲种酸奶的日销售量不高于
箱的天数,以日留住量落入各组的频率为概率,求
的分布列和数学期望.








(1)写出频率分布直方图甲中的





(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于


(3)设




某商场对职工开展了安全知识竞赛的活动,将竞赛成绩按照
,
,… ,
分成
组,得到下面频率分布直方图.根据频率分布直方图.下列说法正确的是( )

①根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的众数估计值为
;
②根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的中位数约为
;
③若该商场有
名职工,考试成绩在
分以下的被解雇,则解雇的职工有
人;
④若该商场有
名职工,商场规定只有安全知识竞赛超过
分(包括
分)的人员才能成为安全科成员,则安全科成员有
人.





①根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的众数估计值为

②根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的中位数约为

③若该商场有



④若该商场有




A.①③ | B.②③ | C.②④ | D.①④ |
随着经济的发展,轿车已成为人们上班代步的一种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.

(1)求此人这三年以来每周开车从家到公司的时间之和在
(时)内的频率;
(2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作代表);
(3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在
(时)内的周数为
,求
的分布列以及数学期望.

(1)求此人这三年以来每周开车从家到公司的时间之和在

(2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作代表);
(3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在



从某小学随机抽取100名学生,将他们的身高(单位:厘米)按照区间 [ 100 , 110),[ 110 , 120),[ 120 , 130),[130 ,140) , [140 , 150] 进行分组,得到频率分布直方图(如图).
(Ⅰ)求直方图中a的值;
(Ⅱ)若要从身高在[ 120 , 130),[130 ,140) , [140 , 150] 三组内的学生中,用分层抽样的方法选取18人参加一项活动,求从身高在[140 ,150]内的学生中应选取的人数;
(Ⅲ)这100名学生的平均身高约为多少厘米?
(Ⅰ)求直方图中a的值;
(Ⅱ)若要从身高在[ 120 , 130),[130 ,140) , [140 , 150] 三组内的学生中,用分层抽样的方法选取18人参加一项活动,求从身高在[140 ,150]内的学生中应选取的人数;
(Ⅲ)这100名学生的平均身高约为多少厘米?

学校医务室对本校高一
名新生的实力情况进行跟踪调查,随机抽取了
名学生的体检表,得到的频率分布直方图如下,若直方图的后四组的频率成等差数列,则估计高一新生中视力在
以下的人数为( )





A.![]() | B.![]() |
C.![]() | D.![]() |
某学校组织学生参加宪法日答题活动,成绩的频率分布直方图如图所示,数据的分组区间是:
,
,
,
,该校参与答题活动的学生共1000人,则答题分数不低于80分的人数为( )






A.15 | B.30 | C.150 | D.300 |
电视传媒为了解某市100万观众对足球节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众每周平均收看足球节目时间的频率分布直方图,将每周平均收看足球节目时间不低于1.5小时的观众称为“足球迷”, 并将其中每周平均收看足球节目时间不低于2.5小时的观众称为“铁杆足球迷”.
(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约为多少人;
(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高
元/张
,则“足球迷”中非“铁杆足球迷”愿意前往观看的人数会减少
,“铁杆足球迷”愿意前往观看的人数会减少
.问票价至少定为多少元/张时,才能使前往现场观看足球比赛的人数不超过10万人?
(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约为多少人;
(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高





世界军人运动会,简称“军运会”,是国际军事体育理事会主办的全球军人最高规格的大型综合性运动会,每四年举办一届,会期7至10天,比赛设27个大项,参赛规模约100多个国家8000余人,规模仅次于奥运会,是和平时期各国军队展示实力形象、增进友好交流、扩大国际影响的重要平台,被誉为“军人奥运会”.根据各方达成的共识,军运会于2019年10月18日至27日在武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项、329个小项.其中,空军五项、军事五项、海军五项、定向越野和跳伞5个项目为军事特色项目,其他项目为奥运项目.现对某国在射击比赛预赛中的得分数据进行分析,得到如下的频率分布直方图:

(1)估计某国射击比赛预赛成绩得分的平均值
(同一组中的数据用该组区间的中点值代表);
(2)根据大量的射击成绩测试数据,可以认为射击成绩
近似地服从正态分布
,经计算第(1)问中样本标准差
的近似值为50,用样本平均数
作为
的近似值,用样本标准差
作为
的估计值,求射击成绩得分
恰在350到400的概率;[参考数据:若随机变量
服从正态分布
,则:
,
,
;
(3)某汽车销售公司在军运会期间推广一款新能源汽车,现面向意向客户推出“玩游戏,送大奖”,活动,客户可根据抛掷骰子的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知骰子出现任意点数的概率都是
,方格图上标有第0格,第1格,第2格,……第50格.遥控车开始在第0格,客户每抛掷一次骰子,遥控车向前移动一次,若抛掷出正面向上的点数是1,2,3,4,5点,遥控车向前移动一格(从
到
),若抛掷出正面向上的点数是6点,遥控车向前移动两格(从
到
),直到遥控车移动到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移动到第
格的概率为
,试证明
是等比数列,并求
,以及根据
的值解释这种游戏方案对意向客户是否具有吸引力.

(1)估计某国射击比赛预赛成绩得分的平均值

(2)根据大量的射击成绩测试数据,可以认为射击成绩













(3)某汽车销售公司在军运会期间推广一款新能源汽车,现面向意向客户推出“玩游戏,送大奖”,活动,客户可根据抛掷骰子的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知骰子出现任意点数的概率都是










为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示由于不慎将部分数据丢失,但知道前4组的频数为
,
,
,
,且满足
,后6组的频数为
,
,
,
,
,
,且后6组各频数之间差值相同,设最大频率为
,视力在4.6到5.0之间的学生数为b,则a,b的值分别为( )














A.0.27,78 | B.0.27,83 | C.2.7,78 | D.2.7.83 |
某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体
名学生中随机抽取了
名学生的体检表,并得到如图的频率分布直方图.

(1)若直方图中后四组的频数成等差数列,试估计全 年级视力在
以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在
名和
名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过
的前提下认为视力与学习成绩有关系?
附:


年级名次 是否近视 | | |
近视 | ![]() | ![]() |
不近视 | ![]() | ![]() |

(1)若直方图中后四组的频数成等差数列,试估计全 年级视力在

(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在



![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | 7.879 |

附:
