- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分13分)根据新修订的《环境空气质量标准》指出空气质量指数在
,各类人群可正常活动.某市环保局在2014年对该市进行为期一年的空气质量检测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为
,
,
,
,
,由此得到样本的空气质量指数频率分布直方图,如图.

(1)求
的值;
(2)根据样本数据,试估计这一年度的空气质量指数的平均值;
(3)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为
,求
的分布列和数学期望.







(1)求

(2)根据样本数据,试估计这一年度的空气质量指数的平均值;
(3)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为


(本小题满分12分)某校从参加某次知识竞赛的同学中,选取
名同学将其成绩(百分制,均为整数)分成
,
,
,
,
,
六组后,得到频率分布直方图(如图),观察图形中的信息,回答下列问题.

(1)从频率分布直方图中,估计本次考试成绩的中位数;
(2)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.








(1)从频率分布直方图中,估计本次考试成绩的中位数;
(2)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一
人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了
份,统计结果如下面的图表所示.

(1)分别求出
,
,
,
的值;
(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环
保之星”,记
为第3组被授予“环保之星”的人数,求
的分布列与数学期望.
人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了

组号 | 年龄 分组 | 答对全卷 的人数 | 答对全卷的人数 占本组的概率 |
1 | [20,30) | 28 | ![]() |
2 | [30,40) | 27 | 0.9 |
3 | [40,50) | 5 | 0.5 |
4 | [50,60] | ![]() | 0.4 |

(1)分别求出




(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环
保之星”,记


如图是某市2014年11月份30天的空气污染指数的频率分布直方图.根据国家标准,污染指数在区间
内,空气质量为优;在区间
内,空气质量为良;在区间
内,空气质量为轻微污染;
由此可知该市11月份空气质量为优或良的天数有 天.





(本小题满分12分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.


(1)求全班人数及分数在[80,100]之间的频率;
(2)现从分数在[80,100]之间的试卷中任取
份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为 X ,求 X 的分布列和数学望期.


(1)求全班人数及分数在[80,100]之间的频率;
(2)现从分数在[80,100]之间的试卷中任取

某班50名学生的高校招生体检表中的视力情况进行统计,其结果的频率分布直方图如图所示,若
高校某专业对视力的要求在
以上,则该班学生中能报
高校该专业的人数为







A.10 | B.20 | C.8 | D.16 |
(12分)空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.1月某日某省x个监测点数据统计如下:


(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(Ⅱ)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?


(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(Ⅱ)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?
某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出
人的成绩作为样本.对高一年级的
名学生的成绩进行统计,并按
分组,得到成绩分布的频率分布直方图(如图).

(Ⅰ)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;
(Ⅲ)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下面
列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”.
参考数据与公式:
由列联表中数据计算
的公式
临界值表





(Ⅰ)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;
(Ⅲ)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下面

| 高一 | 高二 | 合计 |
合格人数 | | | |
不合格人数 | | | |
合计 | | | |
参考数据与公式:
由列联表中数据计算


![]() | 0.10 | 0.05 | 0.010 |
![]() | 2.706 | 3.841 | 6.635 |
临界值表