分某校高二年级共有1600名学生,其中男生960名, 640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得等(优秀),在[60,80)的学生可取得等(良好),在[40,60)的学生可取得等(合格),在不到40分的学生只能取得等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,下图是该频率分布直方图.

(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;
(Ⅱ) 请你根据已知条件将下列2X2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?
 
数学成绩优秀
数学成绩不优秀
合计
男生
12

 
女生


 
合计
 
 

 
附:.

0.15
0.10
0.05

2.072
2.706
3.841
 
当前题号:1 | 题型:解答题 | 难度:0.99
某商场在五一黄金周的促销活动中,对5月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为    万元.
当前题号:2 | 题型:填空题 | 难度:0.99
某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.

(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元)
1
2
3
4
5
销售收益y(单位:万元)
2
3
2
 
7
 
表中的数据显示,之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为.
当前题号:3 | 题型:解答题 | 难度:0.99
某市为了了解高二学生物理学习情况,在34所高中里选出5所学校,随机抽取了近千名学生参加物理考试,将所得数据整理后,绘制出频率分布直方图如图所示.

(1)将34所高中随机编号为01,02,…,34,用下面的随机数表选取5组数抽取参加考试的五所学校.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次取两个数字,则选出来的第4所学校的编号是多少?
49  54  43  54  82  17  37  93  23  78  87  35  20
96  43  84  26  34  91  64  57  24  55  06  88  77
04  74  47  67  21  76  33  50  25  83  92  12  06
(2)求频率分布直方图中的值,试估计全市学生参加物理考试的平均成绩;
(3)如果从参加本次考试的同学中随机选取3名同学,这3名同学中考试成绩在80分以上(含80分)的人数记为,求的分布列及数学期望.
(注:频率可以视为相应的概率)
当前题号:4 | 题型:解答题 | 难度:0.99
为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段)
频数(人数)
频率

9
x

y
0.38

16
0.32

z
s
合计
p
1
 
(1)求出上表中的的值;
(2)按规定,预赛成绩不低于90分的选手参加决赛. 已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为,求的分布列和数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率依次成等差数列,第2个小组的频数为10,则抽取的学生人数为   
当前题号:6 | 题型:填空题 | 难度:0.99
(题文)(题文)某高中为了选拔学生参加“全国中学生英语能力竞赛()”,先在本校进行初赛(满分分),若该校有名学生参加初赛,并根据初赛成绩得到如图所示的频率分布直方图.

(1)根据频率分布直方图,计算这名学生参加初赛成绩的中位数;
(2)该校推荐初赛成绩在分以上的学生代表学校参加竞赛,为了了解情况,在该校推荐参加竞赛的学生中随机抽取人,求选取的三人的初赛成绩在频率分布直方图中处于同组的概率.
当前题号:7 | 题型:解答题 | 难度:0.99
某学校给学生订制校服,从全校近万名学生中随机抽取100人,获得其服装尺码(单位:)数据按照区间进行分组,得到频率分布直方图,如图:

(1)根据频率分布直方图计算抽取的100个学生的服装尺码众数的估计值;
(2)用分导抽样的方法从服装尺码在的学生中共抽取5人,其中尺码在的有几人?
(3)在(2)中抽出的5个学生中,任取2人,求服装尺码在的学生最多有1人的概率.
当前题号:8 | 题型:解答题 | 难度:0.99
为了解学生参加体育锻炼的情况,现抽取了n名学生进行调查,结果显示这些学生每月的锻炼时间(单位:小时)都在[10,50],其中锻炼时间在[30,50]的学生有134人,频率分布直方图如图所示,则n=()
A.150B.160C.180D.200
当前题号:9 | 题型:单选题 | 难度:0.99
为了了解某学段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);...;第五组[17,18].按上述分组得到的频率分布直方图如图所示,已知图中从左到右前3个组的频率之比为3:8:19,且第二组的频数为8.

(1)将频率当作概率,请估计该学段学生中百米成绩在[16,17)内的人数以及所有抽取学生的百米成绩的中位数(精确到0.01秒);
(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
当前题号:10 | 题型:解答题 | 难度:0.99