- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题:



(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在
之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份的分数在
之间的概率;
(3)根据频率分布直方图估计这次测试的平均分.



(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在


(3)根据频率分布直方图估计这次测试的平均分.
高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.

(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数;
(2)请根据频率分布直方图,估计样本数据的众数和中位数(精确到0.01);
(3)设
,
表示该班两个学生的百米测试成绩,已知
,
∈[13,14)∪[17,18],求事件“|
﹣
|>2”的概率.

(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数;
(2)请根据频率分布直方图,估计样本数据的众数和中位数(精确到0.01);
(3)设






(
如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样).求月均用水量在3至4吨的居民数X的分布列和数学期望.
如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样).求月均用水量在3至4吨的居民数X的分布列和数学期望.

)为了了解中学生的身高情况,对某校中学生同年龄的若干名女生的身高进行了测量,将所得数据整理后,画出频率分布直方图(如图),已知图中从左到右五个小组的频率分别为0.017,0.050,0.100,0.133,0.300,第三小组的频数为6(单位:cm)

(1)参加这次测试的学生人数是多少?
(2)身高在哪个范围内的学生人数最多?这一范围内的人数是多少?
(3)如果本次测试身高在154.5 cm以上的为良好,试估计该校学生身高良好率是多少?

(1)参加这次测试的学生人数是多少?
(2)身高在哪个范围内的学生人数最多?这一范围内的人数是多少?
(3)如果本次测试身高在154.5 cm以上的为良好,试估计该校学生身高良好率是多少?
13.某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图),根据频率分布直方图估计这3000名学生在该次数学考试中成绩小于60分的学生数是_____ .

某工厂对一批产品的质量进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图.已知样本中产品净重小于100克的个数是36个,
(I)求样本中净重在
(克)的产品个数;
(II)若规定净重在
(克)的产品为一等品,依此抽样数据,求从该工厂随机抽取的3个产品中一等品个数
的分布列和数学期望.
(I)求样本中净重在

(II)若规定净重在



甲、乙两射击运动员进行射击比赛,射击次数相同,已知两运动员击中的环数
稳定在7,8,
9,10环,他们比赛成绩的频率分布直方图如图:(如果将频率近似的看作概率)
(1)估计乙运动员击中8环的概率,并求甲、乙同时击中9环以上(包括9环)的概率;
(2)求甲运动员击中环数
的概率分布列及期望;若从甲、乙运动员中只能挑选一名参加某大型比赛,你认为让谁参加比较合适?

9,10环,他们比赛成绩的频率分布直方图如图:(如果将频率近似的看作概率)
(1)估计乙运动员击中8环的概率,并求甲、乙同时击中9环以上(包括9环)的概率;
(2)求甲运动员击中环数


某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.

( I ) 求这次铅球测试成绩合格的人数;
(II)用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记
表示两人中成绩不合格的人数,求
的数学期望和方差.

( I ) 求这次铅球测试成绩合格的人数;
(II)用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记


某地教育部门为了调查学生在数学答卷中的有关信息,从上次考试的10000名考生的数学试卷中用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图),则10000人的数学成绩在[140,150]段的约是________人.

为了让学生等多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据频率分布表解答下列问题:
(1)填充频率分布表中的空格.
(2)为鼓励学生更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.

(1)填充频率分布表中的空格.
(2)为鼓励学生更多的学生了解“数学史”知识,成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名学生获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.

