- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某班
名学生在一次考试中数学成绩的频率分布直方图如图,若在这
名学生中,数学成绩不低于100分的人数为33,则
等于()





A.45 | B.48 |
C.50 | D.55 |
某校高三
名学生中随机抽取
名,将他们一次数学模拟成绩绘制成频率分某直方图(如图)(满分为
分,成绩均为不低于
分整数),分为
段:
.
(1)求图中的实数
的值,并估计该校高三学生这次成绩在
分以上的人数;
(2)在随机抽取
名学生中,从成绩在
与
两个分段内随机抽取两名学生,求这两名
学生的成绩之差的绝对值不大于
的概率.






(1)求图中的实数


(2)在随机抽取



学生的成绩之差的绝对值不大于


如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率是()


A.75% | B.25% | C.15% | D.40% |
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下,据此解答下列问题:

(1)求全班人数及分数在
之间的频数;
(2)若要从分数在
之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在
之间的概率.

(1)求全班人数及分数在

(2)若要从分数在


某省2019年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等,同时认定A,B,C等为合格,D等为不合格,已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校样本的频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据的茎叶图如图2所示.
(2)在乙校的样本中,从成绩等级为C,D的学生中随机抽取2名学生进行调研,求抽出的2名学生中至少有1名学生成绩等级为D的概率.
(2)在乙校的样本中,从成绩等级为C,D的学生中随机抽取2名学生进行调研,求抽出的2名学生中至少有1名学生成绩等级为D的概率.
某工厂对一批元件进行了抽样检测,根据抽样检测后的元件长度(单位:mm)数据绘制了频率分布直方图 (如图).若规定长度在 [97,103) 内的元件是合格品,则根据频率分布直方图估计这批产品的合格品率是_______ .

从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).

(1)求被随机抽取的100名同学中身高不超过120厘米的人数;
(2)求出频率分布直方图中a的值;
(3)若要从身高在 [130 ,140) , [140 , 150]两组内的学生中,用分层抽样的方法选取6人,再从这6个人中任选2人参加一项活动,求被选去参加活动的2人中至少有1人身高在[140 ,150]内的概率.

(1)求被随机抽取的100名同学中身高不超过120厘米的人数;
(2)求出频率分布直方图中a的值;
(3)若要从身高在 [130 ,140) , [140 , 150]两组内的学生中,用分层抽样的方法选取6人,再从这6个人中任选2人参加一项活动,求被选去参加活动的2人中至少有1人身高在[140 ,150]内的概率.
如图是总体的一样本频率分布直方图,且在[15,18
内的频数为8,
求(1)样本容量;
(2)若在[12,15
内小矩形面积为
,求在[12,15
内的频数;
(3)在(2)的条件下,求样本数据在[18,33
内的频率并估计总体数据在[18,33
内的频率.

求(1)样本容量;
(2)若在[12,15



(3)在(2)的条件下,求样本数据在[18,33


