- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
经济林是指以生产果品、食用油料、饮料、工业原料和药材等为主要目的的林木,是我国五大林种之一,也是生态、经济和社会效益结合得最好的林种. 改革开放以来,广东省林业蓬勃发展的同时,广东经济林也得到快速的发展,经济林产业已成为广东林业的重要支柱产业之一,在改善生态环境、优化林业产业结构、帮助农民脱贫致富等方面发挥了积极的作用. 我市林业局为了解一片经济林的生长情况,随机测量了其中
株树木的底部周长(单位:
).根据所得数据画出样本的频率分布直方图(如图所示),那么估计在这片经济林中,底部周长不小于
林木所占比例为 .




为征求个人所得税修改建议,某机构对居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)).
(Ⅰ)求居民月收入在[3000,4000)的频率;
(Ⅱ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,设月收入在[3500,4000)的这段应抽人数为m,求m的值.
(Ⅲ)若从(Ⅱ)中被抽取的m人中再选派两人参加一项慈善活动,求其中的甲、乙两人至少有一个被选中的概率.
(Ⅰ)求居民月收入在[3000,4000)的频率;
(Ⅱ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,设月收入在[3500,4000)的这段应抽人数为m,求m的值.
(Ⅲ)若从(Ⅱ)中被抽取的m人中再选派两人参加一项慈善活动,求其中的甲、乙两人至少有一个被选中的概率.

某班50名学生在一次健康体检中,身高全部介于
与
之间.其身高频率分布直方图如图所示.则该班级中身高在
之间的学生共有__________人



对某校400名学生的体重(单位:
)进行统计,得到如图所示的频率分布直方图,则学生体重在60
以上的人数为




A.300 | B.100 |
C.60 | D.20 |
在调查高一年级1500名学生的身高的过程中,抽取了一个样本并将其分组画成频率分布直方图,[160cm,165cm]组的小矩形的高为0.01,[165cm,170cm]组小矩形的高为0.05,试估计该高一年集学生身高在[160cm,170cm]范围内的人数
某校对高三年级800名男生的身高(单位:cm)进行了统计,随机抽取的一个容量为50的样本的频率分布直方图的部分图形如图所示,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.
(1)估计这所学校高三年级全体男生身高180 cm以上(含180 cm)的人数;
(2)求第六组、第七组的频率并补充完整频率分布直方图;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.
(1)估计这所学校高三年级全体男生身高180 cm以上(含180 cm)的人数;
(2)求第六组、第七组的频率并补充完整频率分布直方图;
(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.

某校高二年级的一次数学考试中,为了分析学生的得分情况,随机抽取M名同学的成绩,数据的分组统计表如下:
(1)求出表中M,n的值;
(2)根据上表,请画出频率分布直方图;
(3)为了了解某些同学在数学学习中存在的问题,现从样本中分数在(40,60]中的6位同学中任意抽取2人进行调查,求分数在(40,50]和(50,60]中各有一人的概率.
分组 | 频数 | 频率 | 频率/组距 |
(40,50] | 2 | 0.02 | 0.002 |
(50,60] | 4 | 0.04 | 0.004 |
(60,70] | 11 | 0.11 | 0.011 |
(70,80] | 38 | 0.38 | 0.038 |
(80,90] | m | n | p |
(90,100] | 11 | 0.11 | 0.011 |
合计 | M | N | P |
(1)求出表中M,n的值;
(2)根据上表,请画出频率分布直方图;
(3)为了了解某些同学在数学学习中存在的问题,现从样本中分数在(40,60]中的6位同学中任意抽取2人进行调查,求分数在(40,50]和(50,60]中各有一人的概率.
如图是总体的一个样本频率分布直方图,且在
内频数为8.

(1)求样本在
内的频率;
(2)求样本容量;
(3)若在
内的小矩形面积为0.06,求在
内的频数.


(1)求样本在

(2)求样本容量;
(3)若在


某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是6.
(1)样本中净重大于或等于98克并且小于104克的产 品的个数是多少?
(2)估计该批产品净重的平均值.
(3)若从净重小于100克的样品中抽取两个产品,求两个样品净重都在[98,100)的概率.
(1)样本中净重大于或等于98克并且小于104克的产 品的个数是多少?
(2)估计该批产品净重的平均值.
(3)若从净重小于100克的样品中抽取两个产品,求两个样品净重都在[98,100)的概率.

在某次法律知识竞赛中,将来自不同学校的学生的成绩绘制成如图所示的频率分布直方图.已知成绩在[60,70)的学生有40人, 则成绩在[70,90)的有_______人.
