- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- + 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某大学对1000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这1000名学生在该次自主招生水平测试中不低于
分的学生数是____.


从某校随机抽取
名学生,将他们的体重(单位:
)数据绘制成频率分布直方图(如图),由图中数据可知
_____;所抽取的学生中体重在
的人数是______.





在一次数学考试中,随机抽取100名同学的成绩作为一个样本,其成绩分布情况如下:

则该样本中成绩在
内的频率为

则该样本中成绩在

A.0.15 | B.0.08 | C.0.23 | D.0.67 |
200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h的汽车数量为( )


A.65辆 | B.76辆 | C.88 辆 | D.95辆 |
为了了解某校高一学生体能情况,抽取200位同学进行1分钟跳绳次数测试,将所得数据整理后画出频率分布直方图(如图所示),请回答下列问题:
(1)次数在100~110之间的频率是多少?
(2)若次数在110以上为达标,试估计该校全体高一学生的达标率是多少?
(3)根据频率分布直方图估计,学生跳绳次数的平均数是多少?
(1)次数在100~110之间的频率是多少?
(2)若次数在110以上为达标,试估计该校全体高一学生的达标率是多少?
(3)根据频率分布直方图估计,学生跳绳次数的平均数是多少?

.

某地统计局就本地居民的月收入调查了
人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组
表示收入在
之间).
(Ⅰ)根据频率分布直方图估计样本
数据的中位数所在的区间;
(Ⅱ)求被调查居民月收入在
之间的人数;
(Ⅲ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这
人中,用分层抽样方法抽出
人作进一步分析,则月收入在
的这段应抽多少人?

某地统计局就本地居民的月收入调查了

表示收入在

(Ⅰ)根据频率分布直方图估计样本
数据的中位数所在的区间;
(Ⅱ)求被调查居民月收入在

(Ⅲ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这



某校举行的数学知识竞赛中,将参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.
(1)求成绩在50—70分的频率是多少;
(2)求这次参赛学生的总人数是多少;
(3)求这次数学竞赛成绩的平均分的近似值.
(1)求成绩在50—70分的频率是多少;
(2)求这次参赛学生的总人数是多少;
(3)求这次数学竞赛成绩的平均分的近似值.

某集团进行职业技术考试,将员工的成绩进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是400,则成绩在70-90分的员工人数是 .

