一企业从某条生产线上随机抽取100件产品,测量这些产品的某项技术指标值x,得到如下的频率分布表:
x
[11,13)
[13,15)
[15,17)
[17,19)
[19,21)
[21,23)
频数
2
12
34
38
10
4
 
(Ⅰ)作出样本的频率分布直方图,并估计该技术指标值x的平均数和众数;
(Ⅱ)若x<13或x≥21,则该产品不合格.现从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于13的产品恰有一件的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取了60名学生(其中初中组和高中组各30名)进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将每组学生去图书馆的次数分为5组:,分别制作了如图所示的频率分布表和频率分布直方图.
分组
人数
频率

3
 

9
 

9
 

 
0.2

 
0.1
 

(1)完成频率分布表,并求出频率分布直方图中的值;
(2)在抽取的60名学生中,从在一个月内去图书馆的次数不少于16次的学生中随机抽取3人,并用 表示抽得的高中组的人数,求的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
在我校进行的选修课结业考试中,所有选修 “数学与逻辑”的同学都同时也选修了“阅读与表达”的课程,选修“阅读与表达”的同学都同时也选修了“数学与逻辑”的课程.选修课结业成绩分为A,B,C,D,E五个等级. 某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B的考生有10人,

(1)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(2)现在从“数学与逻辑”科目的成绩为A和D的考生中随机抽取两人,则求抽到的两名考生都是成绩为A的考生的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下:

根据上图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是(   )
A.甲运动员得分的极差大于乙运动员得分的极差
B.甲运动员得分的的中位数大于乙运动员得分的的中位数
C.甲运动员的得分平均值大于乙运动员的得分平均值
D.甲运动员的成绩比乙运动员的成绩稳定
当前题号:4 | 题型:单选题 | 难度:0.99
某校有1400名考生参加市模拟考试,现采取分层抽样的方法从
文、理考生中分别抽取20份和50份数学试卷,进行成绩分析,
得到下面的成绩频数分布表:
分数分组
[0,30)
[30,60)
[60,90)
[90,120)
[120,150]
文科频数
2
4
8
3
3
理科频数
3
7
12
20
8
 
(1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线);
(2)在试卷分析中,发现概念性失分非常严重,统计结果如下:
文理   
失分


概念
15
30
其它
5
20
 
问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表:)

0.5
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:,其中.
当前题号:5 | 题型:解答题 | 难度:0.99
随着社会发展,淮北市在一天的上下班时段也出现了堵车严重的现象。交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3 ),从淮北市交通指挥中心随机选取了一至四马路之间50个交通路段,依据交通指数数据绘制的直方图如图所示:

(I)据此直方图估算交通指数T∈[4,8)时的中位数和平均数;
(II)据此直方图求出早高峰一至四马路之间的3个路段至少有2个严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人用时间的数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
宿州市教体局为了了解届高三毕业生学生情况,利用分层抽样抽取位学生数学学业水平测试成绩作调查,制作了成绩频率分布直方图,如图所示,其中成绩分组区间是:.

(Ⅰ)求图中的值;
(Ⅱ)根据直方图估计宿州市届高三毕业生数学学业水平测试成绩的平均分;
(Ⅲ)在抽取的人中,从成绩在的学生中随机选取人,求这人成绩差别不超过分的概率.
当前题号:7 | 题型:解答题 | 难度:0.99
某校计划面向高一年级1 200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.
(1)分别计算抽取的样本中男生、女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类的学生人数;
(2)依据抽取的180名学生的调查结果,完成以下2×2列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?
 
选择自然科学类
选择社会科学类
合计
男生
 
 
 
女生
 
 
 
合计
 
 
 
 
附:,其中n=a+b+c+d.

0.500
0.400
0.250
0.150
0.100
0.050
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
为了解某校学生的视力情况,现采用随机抽样的方法从该校的两班中各抽取名学生进行视力检测,检测的数据如下:
名学生的视力检测结果:
名学生的视力检测结果:
(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生的视力较好?并计算班的名学生视力的方差;
(Ⅱ)现从班的上述名学生中随机选取名,求这名学生中至少有名学生的视力低于的概率.
当前题号:9 | 题型:解答题 | 难度:0.99
为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个班级中进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如下图,记成绩不低于70分者为“成绩优良”.

(1)分别计算甲、乙两班20个样本中,化学分数前十的平均分,并大致判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?

附:参考公式:,其中
临界值表:

0.10
0.05
0.025
0.010

2.706
3.841
5.024
6.635
 
当前题号:10 | 题型:解答题 | 难度:0.99