- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从某小学随机抽取100名学生,将他们的身高(单位:厘米)按照区间 [ 100 , 110),[ 110 , 120),[ 120 , 130),[130 ,140) , [140 , 150] 进行分组,得到频率分布直方图(如图).
(Ⅰ)求直方图中a的值;
(Ⅱ)若要从身高在[ 120 , 130),[130 ,140) , [140 , 150] 三组内的学生中,用分层抽样的方法选取18人参加一项活动,求从身高在[140 ,150]内的学生中应选取的人数;
(Ⅲ)这100名学生的平均身高约为多少厘米?
(Ⅰ)求直方图中a的值;
(Ⅱ)若要从身高在[ 120 , 130),[130 ,140) , [140 , 150] 三组内的学生中,用分层抽样的方法选取18人参加一项活动,求从身高在[140 ,150]内的学生中应选取的人数;
(Ⅲ)这100名学生的平均身高约为多少厘米?

某单位开展岗前培训期间,甲、乙2人参加了5次考试,成绩统计如下:
(1)根据有关统计知识回答问题:若从甲、乙2人中选出1人上岗,你认为选谁合适?请说明理由;
(2)根据有关概率知识解答以下问题:若一次考试两人成绩之差的绝对值不超过3分,则称该次考试两人“水平相当”.由上述5次成绩统计,任意抽查两次考试,求至少有一次考试两人“水平相当”的概率.
| 第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
甲的成绩 | 82 | 82 | 79 | 95 | 87 |
乙的成绩 | 95 | 75 | 80 | 90 | 85 |
(1)根据有关统计知识回答问题:若从甲、乙2人中选出1人上岗,你认为选谁合适?请说明理由;
(2)根据有关概率知识解答以下问题:若一次考试两人成绩之差的绝对值不超过3分,则称该次考试两人“水平相当”.由上述5次成绩统计,任意抽查两次考试,求至少有一次考试两人“水平相当”的概率.
“不忘初心、牢记使命”主题教育活动正在全国开展,某区政府为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n名,获得了他们一周参加主题教育活动的时间(单位:时)的频率分布直方图,如图所示,已知参加主题教育活动的时间在
内的人数为92.

(1)估计这些党员干部一周参与主题教育活动的时间的平均值;
(2)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在
内的党员干部给予奖励,且参与时间在
,
内的分别获二等奖和一等奖,通过分层抽样方法从这些获奖人中随机抽取5人,再从这5人中任意选取3人,求3人均获二等奖的概率.


(1)估计这些党员干部一周参与主题教育活动的时间的平均值;
(2)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在



由我国引领的
时代已经到来,
的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对
增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图是某单位结合近年数据,对今后几年的
经济产出所做的预测.

结合上图,下列说法错误的是()





结合上图,下列说法错误的是()
A.![]() |
B.设备制造商的经济产前期增长较快,后期放缓 |
C.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 |
D.设备制造商在各年的总经济产出中一直处于领先地位 |
某花圃为提高某品种花苗质量,开展技术创新活动,在
实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.

(1)用样本估计总体,以频率作为概率,若在
两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;
(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.
附:下面的临界值表仅供参考.
(参考公式:
,其中
)


(1)用样本估计总体,以频率作为概率,若在

(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.
| 优质花苗 | 非优质花苗 | 合计 |
甲培育法 | 20 | | |
乙培育法 | | 10 | |
合计 | | | |
附:下面的临界值表仅供参考.
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
(参考公式:


下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是26;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月2日到10月6日认购量的分散程度比成交量的分散程度更大.则上述判断错误的个数为( )


A.4 | B.3 | C.2 | D.1 |
某班有甲乙两个物理科代表,从若干次物理考试中,随机抽取八次成绩的茎叶图(其中茎为成绩十位数字,叶为成绩的个位数字)如下:

(1)分别求甲、乙两个科代表成绩的中位数;
(2)分别求甲、乙两个科代表成绩的平均数,并说明哪个科代表的成绩更稳定;
(3)将频率视为概率,对乙科代表今后三次考试的成绩进行预测,记这三次成绩中不低于90分的次数为
,求
的分布列及均值.

(1)分别求甲、乙两个科代表成绩的中位数;
(2)分别求甲、乙两个科代表成绩的平均数,并说明哪个科代表的成绩更稳定;
(3)将频率视为概率,对乙科代表今后三次考试的成绩进行预测,记这三次成绩中不低于90分的次数为


市政府为了节约用水,调查了100位居民某年的月均用水量(单位:
),频数分布如下:

(1)根据所给数据将频率分布直方图补充完整(不必说明理由);
(2)根据频率分布直方图估计本市居民月均用水量的中位数;
(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).

分组 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 4 | 8 | 15 | 22 | 25 | 14 | 6 | 4 | 2 |

(1)根据所给数据将频率分布直方图补充完整(不必说明理由);
(2)根据频率分布直方图估计本市居民月均用水量的中位数;
(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).
已知某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取
的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为






A.100,8 | B.80,20 | C.100,20 | D.80,8 |
某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理2017年12个月期间甲、乙两地月接待游客量(单位:万人)的数据的茎叶图如下图,则甲、乙两地游客数量方差的大小( )


A.甲比乙小 | B.乙比甲小 | C.甲、乙相等 | D.无法确定 |