- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:
),获得身高数据的茎叶图如图所示,则甲乙的中位数分别为( )



A.17和17 | B.17和17.3 | C.16.8和17 | D.16.9和17.85 |
甲,乙两名运动员练习罚球,每人练习10组,每组罚球40个,每组命中个数的茎叶图如图,则甲,乙两人命中个数的中位数分别为( )


A.22,20 | B.24,18 | C.23,19 | D.23,20 |
某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示:

其中一个数字被污损.
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.
(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习成语知识的时间
(单位:小时)与年龄
(单位:岁),并制作了对照表(如下表所示)
由表中数据,试求线性回归方程
,并预测年龄为55岁观众周均学习成语知识时间.
参考公式:
,
.

其中一个数字被污损.
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.
(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习成语知识的时间


年龄![]() | 20 | 30 | 40 | 50 |
周均学习成语知识时间![]() | 2.5 | 3 | 4 | 4.5 |
由表中数据,试求线性回归方程

参考公式:


某超市计划销售某种产品,先试销该产品
天,对这
天日销售量进行统计,得到频率分布直方图如图.
(Ⅰ)若已知销售量低于50的天数为23,求
;
(Ⅱ)厂家对该超市销售这种产品的日返利方案为:每天固定返利45元,另外每销售一件产品,返利3元;频率估计为概率.依此方案,估计日返利额的平均值.


(Ⅰ)若已知销售量低于50的天数为23,求

(Ⅱ)厂家对该超市销售这种产品的日返利方案为:每天固定返利45元,另外每销售一件产品,返利3元;频率估计为概率.依此方案,估计日返利额的平均值.

近期中央电视台播出的《中国诗词大会》火遍全国.某选拔赛后,随机抽取100名选手的成绩,按成绩由低到高依次分为第1,2,3,4,5组,制成频率分布直方图如下图所示:
(I)在第3、4、5组中用分层抽样抽取5名选手,求第3、4、5组每组各抽取多少名选手;
(II)在(I)的前提下,在5名选手中随机抽取2名选手,求第4组至少有一名选手被抽取的概率.
(I)在第3、4、5组中用分层抽样抽取5名选手,求第3、4、5组每组各抽取多少名选手;
(II)在(I)的前提下,在5名选手中随机抽取2名选手,求第4组至少有一名选手被抽取的概率.

经国务院批复同意,重庆成功入围国家中心城市,某校学生社团针对“重庆的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图所示茎叶图:

(Ⅰ)计算女生打分的平均分,并用茎叶图的数字特征评价男生、女生打分谁更分散;
(Ⅱ)如图按照打分区间
、
、
、
、
绘制的直方图中,求最高矩形的高
;
(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.

(Ⅰ)计算女生打分的平均分,并用茎叶图的数字特征评价男生、女生打分谁更分散;
(Ⅱ)如图按照打分区间






(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.
传承传统文化再掀热潮,在刚刚过去的新春假期中,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,下面的茎叶图是两位选手在个人追逐赛中的比赛得分,则下列说法正确的是( )


A.甲的平均数大于乙的平均数 | B.甲的中位数大于乙的中位数 |
C.甲的方差大于乙的方差 | D.甲的平均数等于乙的中位数 |
“附中好声音”歌唱比赛上,七位评委为甲、乙两名选手打出的分数的茎叶图如图所示,其中
为数字0~9中的一个,去掉一个最高分和一个最低分后,甲、乙两名选手的平均分分别为
,
,则( )





A.![]() | B.![]() | C.![]() | D.![]() |
某网络营销部门为了统计某市网友“双11”在某淘宝店的网购情况,随机抽查了该市当天60名网友的网购金额情况,得到如下数据统计表(如图):

若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2.
(1)试确定
的值,并补全频率分布直方图;
(2)试营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定5人,若需从这5人中随机选取2人进行问卷调查,则恰好选取1名“网购达人”和1名“非网购达人”的概率是多少?

若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2.
(1)试确定

(2)试营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定5人,若需从这5人中随机选取2人进行问卷调查,则恰好选取1名“网购达人”和1名“非网购达人”的概率是多少?