2016年年底以来,国内共享单车突然就火爆了起来,由于其符合低碳出行理念,共享单车已经越来越多地引起人们的注意.某市调查市民共享单车的使用情况,随机采访10位经常使用共享单车的市民,收集到他们每周使用的事件如下(单位:小时):

(1)根据以上数据,画出使用事件的茎叶图;
(2)求出其中位数,平均数,方差.
当前题号:1 | 题型:解答题 | 难度:0.99
酒后违法驾驶机动车危害巨大,假设驾驶人员血液中的酒精含量为(简称血酒含量,单位是毫克/100毫升),当时,为酒后驾车;当时,为醉酒驾车.如图为某市交管部分在一次夜间行动中依法查出的名饮酒后违法驾驶机动车者抽血检测后所得频率分布直方图(其中人数包含).

(Ⅰ)求查获的醉酒驾车的人数;
(Ⅱ)从违法驾车的人中按酒后驾车和醉酒驾车利用分层抽样抽取人做样本进行研究,再从抽取的人中任取人,求人中含有醉酒驾车人数的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
某高校组织自主招生考试,共有2000名学生报名参加了笔试,成绩均介于195分到275分之间,从中随机抽取50名学生的成绩进行统计,将统计的结果按如下方式分成八组:第一组,第二组,……,第八组.如图是按上述分组方法得到的频率分布直方图:

(1)求值和这2000名学生的平均分;
(2)若计划按成绩取1000名学生进入面试环节,试估计应将分数线定为多少?
当前题号:3 | 题型:解答题 | 难度:0.99
为响应国家“精准扶贫,产业扶贫”的战略,某市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.

(Ⅰ)求图中的值;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度. AQI共分六级,从一级优(-),二级良(-),三级轻度污染(-),四级中度污染(-),直至五级重度污染(-),六级严重污染(大于).下图是昆明市月份随机抽取天的AQI茎叶图,利用该样本估计昆明市月份空气质量优的天数(按这个月总共天计算)为( )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
某校为了解高一学生周末的“阅读时间”,从高一年级中随机抽取了名学生进行调査,获得了每人的周末“阅读时间”(单位:小时),按照分成组,制成样本的频率分布直方图如图所示:

(Ⅰ)求图中的值;
(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)用样本频率代替概率. 现从全校高一年级随机抽取名学生,其中有名学生“阅读时间”在小时内的概率为,其中.当取最大时,求的值.
当前题号:6 | 题型:解答题 | 难度:0.99
某公司生产两种产品,且产品的质量用质量指标来衡量,质量指标越大表明产品质量越好.现按质量指标划分:质量指标大于或等于82为一等品,质量指标小于82为二等品.现随机抽取这两种产品各100件进行检测,检测结果统计如表:
测试指标





产品
8
12
40
32
8
产品
7
18
40
29
6
 
(Ⅰ)请估计产品的一等奖;
(Ⅱ)已知每件产品的利润(单位:元)与质量指标值的关系式为:
已知每件产品的利润(单位:元)与质量指标值的关系式为:
(i)分别估计生产一件产品,一件产品的利润大于0的概率;
(ii)请问生产产品,产品各100件,哪一种产品的平均利润比较高.
当前题号:7 | 题型:解答题 | 难度:0.99
从某校高三学生中随机抽取了名学生,统计了期末数学考试成绩如下表:
(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这名学生的平均成绩;
(2)用分层抽样的方法在分数在内的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至少有人的分数在内的概率.
当前题号:8 | 题型:解答题 | 难度:0.99
某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验。甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在区间内,并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良。

根据以上信息填好下列联表,并判断出有多大的把握认为学生成绩优良与班级有关?

(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率。
(以下临界值及公式仅供参考
,)
当前题号:9 | 题型:解答题 | 难度:0.99
某市在对高三学生的4月理科数学调研测试的数据统计显示,全市10000名学生的成绩服从正态分布,现从甲校100分以上(含100分)的200份试卷中用系统抽样的方法抽取了20份试卷来分析,统计如下:

(注:表中试卷编号

(1)列出表中试卷得分为126分的试卷编号(写出具体数据);
(2)该市又从乙校中也用系统抽样的方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图6),试通过茎叶图比较两校学生成绩的平均分及分散程度(均不要求计算出具体值,给出结论即可);
(3)在第(2)问的前提下,从甲乙两校这40名学生中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市前15名的人数记为,求的分布列和期望.
(附:若随机变量服从正态分布,则
当前题号:10 | 题型:解答题 | 难度:0.99