- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2016年年底以来,国内共享单车突然就火爆了起来,由于其符合低碳出行理念,共享单车已经越来越多地引起人们的注意.某市调查市民共享单车的使用情况,随机采访10位经常使用共享单车的市民,收集到他们每周使用的事件如下(单位:小时):

(1)根据以上数据,画出使用事件的茎叶图;
(2)求出其中位数,平均数,方差.

(1)根据以上数据,画出使用事件的茎叶图;
(2)求出其中位数,平均数,方差.
酒后违法驾驶机动车危害巨大,假设驾驶人员血液中的酒精含量为
(简称血酒含量,单位是毫克/100毫升),当
时,为酒后驾车;当
时,为醉酒驾车.如图为某市交管部分在一次夜间行动中依法查出的
名饮酒后违法驾驶机动车者抽血检测后所得频率分布直方图(其中
人数包含
).

(Ⅰ)求查获的醉酒驾车的人数;
(Ⅱ)从违法驾车的
人中按酒后驾车和醉酒驾车利用分层抽样抽取
人做样本进行研究,再从抽取的
人中任取
人,求
人中含有醉酒驾车人数
的分布列和数学期望.







(Ⅰ)求查获的醉酒驾车的人数;
(Ⅱ)从违法驾车的






某高校组织自主招生考试,共有2000名学生报名参加了笔试,成绩均介于195分到275分之间,从中随机抽取50名学生的成绩进行统计,将统计的结果按如下方式分成八组:第一组
,第二组
,……,第八组
.如图是按上述分组方法得到的频率分布直方图:

(1)求
值和这2000名学生的平均分;
(2)若计划按成绩取1000名学生进入面试环节,试估计应将分数线定为多少?




(1)求

(2)若计划按成绩取1000名学生进入面试环节,试估计应将分数线定为多少?
为响应国家“精准扶贫,产业扶贫”的战略,某市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在
的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.

(Ⅰ)求图中
的值;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为
,求
的分布列及数学期望.


(Ⅰ)求图中

(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为


AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度. AQI共分六级,从一级优(
-
),二级良(
-
),三级轻度污染(
-
),四级中度污染(
-
),直至五级重度污染(
-
),六级严重污染(大于
).下图是昆明市
年
月份随机抽取
天的AQI茎叶图,利用该样本估计昆明市
年
月份空气质量优的天数(按这个月总共
天计算)为( )



















A.![]() | B.![]() | C.![]() | D.![]() |
某校为了解高一学生周末的“阅读时间”,从高一年级中随机抽取了
名学生进行调査,获得了每人的周末“阅读时间”(单位:小时),按照
分成
组,制成样本的频率分布直方图如图所示:

(Ⅰ)求图中
的值;
(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)用样本频率代替概率. 现从全校高一年级随机抽取
名学生,其中有
名学生“阅读时间”在
小时内的概率为
,其中
.当
取最大时,求
的值.




(Ⅰ)求图中

(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)用样本频率代替概率. 现从全校高一年级随机抽取







某公司生产
、
两种产品,且产品的质量用质量指标来衡量,质量指标越大表明产品质量越好.现按质量指标划分:质量指标大于或等于82为一等品,质量指标小于82为二等品.现随机抽取这两种产品各100件进行检测,检测结果统计如表:
(Ⅰ)请估计
产品的一等奖;
(Ⅱ)已知每件
产品的利润
(单位:元)与质量指标值
的关系式为:
已知每件
产品的利润
(单位:元)与质量指标值
的关系式为:
(i)分别估计生产一件
产品,一件
产品的利润大于0的概率;
(ii)请问生产
产品,
产品各100件,哪一种产品的平均利润比较高.


测试指标 | ![]() | ![]() | ![]() | ![]() | ![]() |
产品![]() | 8 | 12 | 40 | 32 | 8 |
产品![]() | 7 | 18 | 40 | 29 | 6 |
(Ⅰ)请估计

(Ⅱ)已知每件




已知每件




(i)分别估计生产一件


(ii)请问生产


从某校高三学生中随机抽取了
名学生,统计了期末数学考试成绩如下表:
(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这
名学生的平均成绩;
(2)用分层抽样的方法在分数在
内的学生中抽取一个容量为
的样本,将该样本看成一个总体,从中任取
人,求至少有
人的分数在
内的概率.

(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这

(2)用分层抽样的方法在分数在






某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验。甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在
区间内,并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良。

根据以上信息填好下列
联表,并判断出有多大的把握认为学生成绩优良与班级有关?

(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率。
(以下临界值及公式仅供参考

,
)


根据以上信息填好下列


(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率。
(以下临界值及公式仅供参考



某市在对高三学生的4月理科数学调研测试的数据统计显示,全市10000名学生的成绩服从正态分布
,现从甲校100分以上(含100分)的200份试卷中用系统抽样的方法抽取了20份试卷来分析,统计如下:

(注:表中试卷编号
)

(1)列出表中试卷得分为126分的试卷编号(写出具体数据);
(2)该市又从乙校中也用系统抽样的方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图6),试通过茎叶图比较两校学生成绩的平均分及分散程度(均不要求计算出具体值,给出结论即可);
(3)在第(2)问的前提下,从甲乙两校这40名学生中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市前15名的人数记为
,求
的分布列和期望.
(附:若随机变量
服从正态分布
,则
,
,
)


(注:表中试卷编号


(1)列出表中试卷得分为126分的试卷编号(写出具体数据);
(2)该市又从乙校中也用系统抽样的方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图6),试通过茎叶图比较两校学生成绩的平均分及分散程度(均不要求计算出具体值,给出结论即可);
(3)在第(2)问的前提下,从甲乙两校这40名学生中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市前15名的人数记为


(附:若随机变量




