- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某高中文学社从高二文科学生中抽取男生60名,女生40名调查对100篇文学名篇的了解程度,统计结果如下:
(1)试估计该校学生阅读文学名篇的平均数(同一组数据用该组区间中点值作代表),从计算结果看,阅读量与性别是否有关;
(2)阅读量不低于80篇的称为“非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否在犯错误的概率不超过
的前提下认为对文学名篇“非常了解”与性别有关?(公式数据参考卷首)
阅读过的作品数(篇) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
男生 | 3 | 9 | 18 | 15 | 6 | 9 |
女生 | 6 | 4 | 5 | 10 | 13 | 2 |
(1)试估计该校学生阅读文学名篇的平均数(同一组数据用该组区间中点值作代表),从计算结果看,阅读量与性别是否有关;
(2)阅读量不低于80篇的称为“非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否在犯错误的概率不超过


我市两所高中分别组织部分学生参加了“七五普法网络知识大赛”,现从这两所学校的参赛学生中分别随机抽取30名学生的成绩(百分制)作为样本,得到样本数据的茎叶图如图所示.

(Ⅰ)若乙校每位学生被抽取的概率为0.15,求乙校参赛学生总人数;
(Ⅱ)根据茎叶图,从平均水平与波动情况两个方面分析甲、乙两校参赛学生成绩(不要求计算);
(Ⅲ)从样本成绩低于60分的学生中随机抽取3人,求3人不在同一学校的概率.

(Ⅰ)若乙校每位学生被抽取的概率为0.15,求乙校参赛学生总人数;
(Ⅱ)根据茎叶图,从平均水平与波动情况两个方面分析甲、乙两校参赛学生成绩(不要求计算);
(Ⅲ)从样本成绩低于60分的学生中随机抽取3人,求3人不在同一学校的概率.
某工厂于2016年下半年对生产工艺进行了改造(每半年为一个生产周期),从2016年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示(如图).已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润20元,生产一件合格品可获利润10元,生产一件次品要亏损10元
(Ⅰ)求该企业2016年一年生产一件产品的利润为10的概率;
(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.

附:
K2=
.
(Ⅰ)求该企业2016年一年生产一件产品的利润为10的概率;
(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.

附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2=

自2016年下半年起六安市区商品房价不断上涨,为了调查研究六安城区居民对六安商品房价格承受情况,寒假期间小明在六安市区不同小区分别对50户居民家庭进行了抽查,并统计出这50户家庭对商品房的承受价格(单位:元/平方),将收集的数据分成
,
,
,
,
五组(单位:元/平方),并作出频率分布直方图如图:

(Ⅰ)试根据频率分布直方图估计出这50户家庭对商品房的承受价格平均值(单位:元/平方);
(Ⅱ)为了作进一步调查研究,小明准备从承受能力超过4000元/平方的居民中随机抽出2户进行再调查,设抽出承受能力超过8000元/平方的居民为
户,求
的分布列和数学期望.






(Ⅰ)试根据频率分布直方图估计出这50户家庭对商品房的承受价格平均值(单位:元/平方);
(Ⅱ)为了作进一步调查研究,小明准备从承受能力超过4000元/平方的居民中随机抽出2户进行再调查,设抽出承受能力超过8000元/平方的居民为


鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家
级旅游景区——龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.
某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)

(1)完成表格一中的空位①-④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为
,求
的分布列
(表二)
(参考公式:
,其中
.)

某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
年龄 | 频数 | 频率 | 男 | 女 |
![]() | 10 | 0.1 | 5 | 5 |
[10,20) | ① | ② | ③ | ④ |
[20,30) | 25 | 0.25 | 12 | 13 |
[30,40) | 20 | 0.2 | 10 | 10 |
[40,50) | 10 | 0.1 | 6 | 4 |
[50,60) | 10 | 0.1 | 3 | 7 |
[60,70) | 5 | 0.05 | 1 | 4 |
[70,80) | 3 | 0.03 | 1 | 2 |
[80,90) | 2 | 0.02 | 0 | 2 |
合计 | 100 | 1.00 | 45 | 55 |

(1)完成表格一中的空位①-④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为


(表二)
| 50岁以上 | 50岁以下 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:


根据国家环保部新修订的《环境空气质量标准》规定:居民区
的年平均浓度不得超过35微克/立方米,
的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年30天
的24小时平均浓度(单位:微克/立方米)的监测数据,将这30天的测量结果绘制成样本频率分布直方图如图.

(Ⅰ)求图中
的值;
(Ⅱ)由频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从
的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.




(Ⅰ)求图中

(Ⅱ)由频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从

如图是某市2017年3月1日至16日的空气质量指数趋势图,空气质量指数
小于
表示空气质量优良,空气质量指数大于
表示空气重度污染.

(1)若该人随机选择3月1日至3月14日中的某一天到达该市,到达后停留
天(到达当日算
天),求此人停留期间空气重度污染的天数为
天的概率;
(2)若该人随机选择3月7日至3月12日中的
天到达该市,求这
天中空气质量恰有
天是重度污染的概率.




(1)若该人随机选择3月1日至3月14日中的某一天到达该市,到达后停留



(2)若该人随机选择3月7日至3月12日中的



某大学为调研学生在
,
两家餐厅用餐的满意度,从在
,
两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以10为组距分成6组:
,
,
,
,
,
,得到
餐厅分数的频率分布直方图,和
餐厅分数的频数分布表:

(Ⅰ)在抽样的100人中,求对
餐厅评分低于30的人数;
(Ⅱ)从对
餐厅评分在
范围内的人中随机选出2人,求2人中恰有1人评分在
范围内的概率;
(Ⅲ)如果从
,
两家餐厅中选择一家用餐,你会选择哪一家?说明理由.




整理评分数据,将分数以10为组距分成6组:









(Ⅰ)在抽样的100人中,求对

(Ⅱ)从对



(Ⅲ)如果从


某校对高二年级选学生物的学生的某次测试成绩进行了统计,随机抽取了
名学生的成绩作为样本,根据此数据作出了频率分布统计表和频率分布直方图如下:

(1)求表中
的值和频率分布直方图中
的值;
(2)如果用分层抽样的方法,从样本成绩在
和
的学生中共抽取
人,再从
人中选
人,
求这
人成绩在
的概率.



(1)求表中


(2)如果用分层抽样的方法,从样本成绩在





求这

