- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.

(1)求第四小组的频率;
(2)参加这次测试的学生人数是多少?
(3)在这次测试中,学生跳绳次数的中位数落在第几小组内?

(1)求第四小组的频率;
(2)参加这次测试的学生人数是多少?
(3)在这次测试中,学生跳绳次数的中位数落在第几小组内?
我市准备实施天然气价格阶梯制,现提前调查市民对天然气价格阶梯制的态度,随机抽查了50名市民,现将调查情况整理成了被调查者的频率分布直方图(如图)和赞成者的频数表如下:

(Ⅰ)若从年龄在
,
的被调查者中各随机选取2人进行调查,求所选取的4人中至少有2人对天然气价格阶梯制持赞成态度的概率;
(Ⅱ)若从年龄在
,
的被调查者中各随机选取2人进行调查,记选取的4人中对天然气价格实施阶梯制持不赞成态度的人数为
,求随机变量
的分布列和数学期望.

(Ⅰ)若从年龄在


(Ⅱ)若从年龄在





广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2016年某校社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:
,
,
,
,
,
后得到如图所示的频率分布直方图.
(l)计算这40名广场舞者中年龄分布在
的人数;
(2)若从年龄在
中的广场舞者任取2名,求这两名广场舞者中恰有一人年龄在
的概率.






(l)计算这40名广场舞者中年龄分布在

(2)若从年龄在



在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:
(1)画出频率分布表,并画出频率分布直方图;
(2)估计纤度落在
中的概率及纤度小于
的概率是多少?
(3)从频率分布直方图估计出纤度的众数、中位数和平均数.
分组 | 频数 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
合计 | ![]() |
(1)画出频率分布表,并画出频率分布直方图;
(2)估计纤度落在


(3)从频率分布直方图估计出纤度的众数、中位数和平均数.
为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.

请根据以上频率分布表和频率分布直方图,回答下列问题:
(1)求出
的值;
(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?
(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用:列表法或树状图求出小明、小敏同时被选中的概率.(注:五位同学请用
表示,其中小明为
,小敏为
)


请根据以上频率分布表和频率分布直方图,回答下列问题:
(1)求出

(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?
(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用:列表法或树状图求出小明、小敏同时被选中的概率.(注:五位同学请用



积极行动起来,共建节约型社会!某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:
请你估计该200户家庭这个月节约用水的总量是( )
节水量(单位:吨) | 0.5 | 1 | 1.5 | 2 |
家庭数(户) | 2 | 3 | 4 | 1 |
请你估计该200户家庭这个月节约用水的总量是( )
A.240吨 | B.360吨 | C.180吨 | D.200吨 |
某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组
后得到如右部分频率分布直方图,观察图中的信息,
回答下列问题:
(1)补全频率分布直方图;并估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(2)用分层抽样的方法在分数段为
的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段
内的概率.


回答下列问题:
(1)补全频率分布直方图;并估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(2)用分层抽样的方法在分数段为


在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为
,
,
,
,
五个等级.某考场考生两科的考试成绩的数据如下图所示,其中“数学与逻辑”科目的成绩为
的考生有
人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为
的人数.
(Ⅱ)若等级
,
,
,
,
分别对应
分,
分,
分,
分,
分.
(ⅰ)求该考场考生“数学与逻辑”科目的平均分.
(ⅱ)若该考场共有
人得分大于
分,其中有
人
分,
人
分,
人
分.
从这
人中随机抽取两人,求两人成绩之和的分布列和数学期望.







(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为

(Ⅱ)若等级










(ⅰ)求该考场考生“数学与逻辑”科目的平均分.
(ⅱ)若该考场共有








从这

科目:数学与逻辑 | 科目:阅读与表达 |
![]() | ![]() |