- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为 ( )
A.10 | B.9 | C.11 | D.8 |
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
对某同学的6次物理测试成绩(满分100分)进行统计,作出的茎叶图如图所示,给出关于该同学物理成绩的以下说法:①中位数为84;②众数为85;③平均数为85;④极差为12;其中,正确说法的序号是__________.

某校高一年级共有1000名学生,其中男生400名,女生600名,该校组织了一次口语模拟考试(满分为100分).为研究这次口语考试成绩为高分(80分以上(含80分)为高分)是否与性别有关,现按性别采用分层抽样的方法抽取100名学生的成绩,按从低到高分成
七组,并绘制成如图所示的频率分布直方图.已知区间
上的频率等于区间
上频率,区间
上的频率与区间
上的频率之比为
.

(1)估计该校高一年级学生在口语考试中,成绩为高分的人数;
(2)请你根据已知条件将下列
列联表补充完整,并判断是否有
的把握认为“该校高一年级学生在本次考试中口语成绩及格(60分以上(含60分)为及格)与性别有关”.
附:






![]() | 0.010 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 6.635 | 3.841 | 5.024 | 6.635 | 10.828 |

(1)估计该校高一年级学生在口语考试中,成绩为高分的人数;
(2)请你根据已知条件将下列




某篮球运动员在一个赛季的35场比赛中的得分的茎叶图如图所示,则中位数与众数分别为( )


A.23,21 | B.23,23 |
C.24,23 | D.25,23 |
毕节市正实施“五城同创”计划。为搞好卫生维护工作,政府招聘了200名市民志愿者,按年龄情况进行统计的频率分布表和频率分布直方图如下:

(1)频率分布表中的①②③位置应填什么数?补全频率分布直方图;
(2)根据频率分布直方图估计这200名志愿者的平均年龄.
分组(岁) | 频数 | 频率 |
[30,35) | 20 | 0.1 |
[35,40) | 20 | 0.1 |
[40,45) | ① | 0.2 |
[45,50) | ② | ③ |
[50,55] | 40 | 0.2 |
合计 | 200 | 1 |

(1)频率分布表中的①②③位置应填什么数?补全频率分布直方图;
(2)根据频率分布直方图估计这200名志愿者的平均年龄.
一个蜂巢里有1只蜜蜂,第一天,它飞出去带回了5个伙伴;第二天,6只蜜蜂飞出去各自带回了5个伙伴........如果这个过程继续下去,那么第6天所有的蜜蜂归巢后,蜂巢中共有蜜蜂多少只( )
A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示,
,
分别表示甲乙两名运动员这项测试成绩的平均数,
,
分别表示甲乙两名运动员这项测试成绩的标准差,则有 ( )






A.![]() | B.![]() ![]() ![]() |
C.![]() | D.![]() |
某研究小组为了研究某品牌智能手机在正常使用情况下的电池供电时间,分别从该品牌手机的甲、乙两种型号中各选取
部进行测试,其结果如下:
(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;
(2)为了进一步研究乙种手机的电池性能,从上述
部乙种手机中随机抽取
部,记所抽
部手机供电时间不小于
小时的个数为
,求
的分布列和数学期望.

甲种手机供电时间(小时) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
乙种手机供电时间(小时) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;
(2)为了进一步研究乙种手机的电池性能,从上述






某市对上下班交通情况做抽样调查,作出上下班时间各抽取12辆机动车行驶时速(单位:
)的茎叶图(如下):

则上下班时间机动车行驶时速的中位数分别为( )


则上下班时间机动车行驶时速的中位数分别为( )
A.28与28.5 | B.29与28.5 | C.28与27.5 | D.29与27.5 |