- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
经研究,城市公交车的数量太多容易造成资源浪费,太少又难以满足乘客需求.为此,某市公交公司从某站占的40名候车乘客中随机抽取15人,将他们的候车时间(单位:
)作为样本分成5组如下表:
(1)估计这40名乘客中侯车时间不少于20分钟的人数;
(2)若从上表侯车时间不少于10分钟的7人中选2人作进一步的问卷调查,求抽到的两人侯车时间都不少于20分钟的概率.

组别 | 侯车时间 | 人数 |
一 | ![]() | 2 |
二 | ![]() | 6 |
三 | ![]() | 2 |
四 | ![]() | 2 |
五 | ![]() | 3 |
(1)估计这40名乘客中侯车时间不少于20分钟的人数;
(2)若从上表侯车时间不少于10分钟的7人中选2人作进一步的问卷调查,求抽到的两人侯车时间都不少于20分钟的概率.
如图是某中学高一学生体重的频率分布直方图,已知图中从左到右的前三组的频率之比为1∶2∶3,则第三小组的频率为( )


A.0.125 | B.0.250 | C.0.375 | D.0.500 |
近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在
岁的有2500人,年龄在
岁的有1200人,则
的值为( )





A.0.013 | B.0.13 | C.0.012 | D.0.12 |
某市为了了解居民家庭网购消费情况,调查了10000户家庭的月消费金额(单位:元),消费金额均在
上,其频率分布直方图如图所示,则被调查的这10000户家庭中,月消费金额在1000元以下的有__________户.


某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段
后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是
~
分及
~
分的学生中选两人,记他们的成绩为
,求满足“
”的概率.


(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是






某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率。
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率。

为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,统计数据如下:
甲网站:28,20,38,41,55,24,64,52,66,70,67,72,73,58
乙网站:5,12,21,14,36,37,19,42,54,45,42,6,61,71

(1)根据两组数据完成甲、乙两个网站点击量的茎叶图,并通过茎叶图比较两个网站点击量的平均值以及分散程度(不要求计算出具体值,给出结论即可);
(2)根据点击量,把甲、乙两个网站受欢迎的程度从低到高分为三个等级(点击量越大说明受欢迎程度越高)
根据所给数据,以事件发生的频率作为相应事件发生的概率,估计哪个网站受欢迎程度的等级为不喜欢的概率大?说明理由.
甲网站:28,20,38,41,55,24,64,52,66,70,67,72,73,58
乙网站:5,12,21,14,36,37,19,42,54,45,42,6,61,71

(1)根据两组数据完成甲、乙两个网站点击量的茎叶图,并通过茎叶图比较两个网站点击量的平均值以及分散程度(不要求计算出具体值,给出结论即可);
(2)根据点击量,把甲、乙两个网站受欢迎的程度从低到高分为三个等级(点击量越大说明受欢迎程度越高)
点击量 | 低于40 | 40到59 | 不低于60 |
受欢迎程度的等级 | 不喜欢 | 喜欢 | 非常喜欢 |
根据所给数据,以事件发生的频率作为相应事件发生的概率,估计哪个网站受欢迎程度的等级为不喜欢的概率大?说明理由.
长沙梅溪湖步步高购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取
张进行统计,将结果分成6组,分别是:
,
,制成如下所示的频率分布直方图(假设消费金额均在
元的区间内).

(1)若在消费金额为
元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自
元区间的概率;
(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案.
方案一:全场商品打八折.
方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).





(1)若在消费金额为


(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案.
方案一:全场商品打八折.
方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).