- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线中的参数范围问题
- + 求抛物线上一点到定直线的最值
- 求抛物线上一点到定点的最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为
,直线
,点
,
是抛物线
上的动点.
(1)求
的最小值及相应点
的坐标;
(2)点
到直线
距离的最小值及相应点
的坐标;
(3)直线
过点
与抛物线
交于
、
两点,交直线
于
点,若
,
,求
的值.






(1)求


(2)点



(3)直线










如图,已知抛物线
:
上一点
,过点
作直线
交抛物线
于另一点
,点
在线段
上,
在抛物线
上,
轴,
于点
.

(1)若
,求
的最大值;
(2)求使等式
恒成立的直线
的方程.















(1)若


(2)求使等式


定义:设
分别为曲线
和
上的点,把
两点距离的最小值称为曲线
到
的距离.
(1)求曲线
到直线
的距离;
(2)若曲线
到直线
的距离为
,求实数
的值;
(3)求圆
到曲线
的距离.






(1)求曲线


(2)若曲线




(3)求圆


已知点F为抛物线C:x2=2py(P>0)的焦点,点A(m,3)在抛物线C上,且|AF|=5,若点P是抛物线C上的一个动点,设点P到直线x-2y-6=0的距离为d.
(1)求抛物线C的方程;
(2)求d的最小值.
(1)求抛物线C的方程;
(2)求d的最小值.