- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线中的参数范围问题
- 求抛物线上一点到定直线的最值
- 求抛物线上一点到定点的最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线L:x2=2py(p>0)和点M(2,2),若抛物线L上存在不同的两点A、B满足
.
(1)求实数p的取值范围;
(2)当p=2时,抛物线L上是否存在异于A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线?若存在,求出点C的坐标;若不存在,请说明理由.

(1)求实数p的取值范围;
(2)当p=2时,抛物线L上是否存在异于A、B的点C,使得经过A、B、C三点的圆和抛物线L在点C处有相同的切线?若存在,求出点C的坐标;若不存在,请说明理由.
已知抛物线
上有四点
、
,点M(3,0),直线AB、CD都过点M,且都不垂直于x轴,直线PQ过点M且垂直于x轴,交AC于点P,交BD于点Q.

(1)求
的值;
(2)求证:
.




(1)求

(2)求证:

已知函数
与
的图象相交于
,
,
,
分别是
的图象在
两点的切线,
分别是
,
与
轴的交点.
(Ⅰ)求
的取值范围;
(Ⅱ)设
为点
的横坐标,当
时,写出
以
为自变量的函数式,并求其定义域和值域;
(Ⅲ)试比较
与
的大小,并说明理由(
是坐标原点).












(Ⅰ)求

(Ⅱ)设





(Ⅲ)试比较



已知抛物线
的方程为
,焦点为
,有一定点
,
在抛物线准线上的射影为
,
为抛物线上一动点.
(1)当
取最小值时,求
;
(2)如果一椭圆
以
、
为焦点,且过点
,求椭圆
的方程及右准线方程;
(3)设
是过点
且垂直于
轴的直线,是否存在直线
,使得
与抛物线
交于两个
不同的点
、
,且
恰被
平分?若存在,求出
的倾斜角
的范围;若不存在,请说明理由.







(1)当


(2)如果一椭圆





(3)设






不同的点






动点
在抛物线
上,过点
作
轴的垂线,垂足为
,设
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设点
,过点
的直线交轨迹
于
(不同于点
)两点,设直线
的斜率分别为
,求
的取值范围.






(Ⅰ)求点


(Ⅱ)设点








已知抛物线
,过焦点
作动直线交
于
两点,过
分别作圆
的两条切线,切点分别为
,若
垂直于
轴时,
.
(1)求抛物线方程;
(2)若点
也在曲线
上,
为坐标原点,且
,
,求实数
的取值范围.











(1)求抛物线方程;
(2)若点






抛物线
的焦点
是
的顶点,过
点的直线
的斜率分别是
,直线
与
交于
,直线
与
交于

(I)求抛物线
的方程,并证明:
分别是
的中点,且直线
过定点
(II)①求
面积的最小值
②设
面积分别为
,求证:














(I)求抛物线




(II)①求

②设


