- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的右焦点
与抛物线
的焦点重合,且其离心率为
。
(1)求椭圆
的方程;
(2)已知与坐标轴不垂直的直线
与
交于
,
两点,线段
中点为
,问
(
为坐标原点)是否为定值?请说明理由.




(1)求椭圆

(2)已知与坐标轴不垂直的直线








曲线
,直线
关于直线
对称的直线为
,直线
,
与曲线
分别交于点
、
和
、
,记直线
的斜率为
.
(Ⅰ)求证:
;
(Ⅱ)当
变化时,试问直线
是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.













(Ⅰ)求证:

(Ⅱ)当


已知椭圆
,离心率
.直线
与
轴交于点
,与椭圆
相交于
两点.自点
分别向直线
作垂线,垂足分别为
.
(1)求椭圆
的方程及焦点坐标;
(2)记
,
,
的面积分别为
,
,
,试证明
为定值.










(1)求椭圆

(2)记








已知椭圆
,
分别为椭圆的右顶点和上顶点,
为坐标原点,
为椭圆第一象限上一动点.
(1)直线
与
轴交于点
,直线
与
轴交于点
,求证:
为定值;
(2)
为
关于
的对称点,求四边形
面积
的最大值.





(1)直线







(2)





已知椭圆的中心在原点,焦点在
轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点
.
(1)求椭圆的方程;
(2)求
的取值范围;
(3)若直线
不过点
,求证:直线
的斜率互为相反数.





(1)求椭圆的方程;
(2)求

(3)若直线



已知椭圆C:
的焦距为
,且C过点
.
(1)求椭圆C的方程;
(2)设
、
分别是椭圆C的下顶点和上顶点,P是椭圆上异于
、
的任意一点,过点P作
轴于M,N为线段PM的中点,直线
与直线
交于点D,E为线段
的中点,O为坐标原点,则
是否为定值,若是,请求出定值;若不是,请说明理由.



(1)求椭圆C的方程;
(2)设









已知双曲线
具有性质:若
、
是双曲线左、右顶点,
为双曲线上一点,且
在第一象限.记直线
,
的斜率分别为
,
,那么
与
之积是与点
位置无关的定值.
(1)试对椭圆
,类比写出类似的性质(不改变原有命题的字母次序),并加以证明.
(2)若椭圆
的左焦点
,右准线为
,在(1)的条件下,当
取得最小值时,求
的垂心
到
轴的距离.












(1)试对椭圆

(2)若椭圆







已知椭圆
的左、右顶点分别为
,长轴长为4,离心率为
.过右焦点
的直线
交椭圆
于
两点(均不与
重合),记直线
的斜率分别为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在常数
,当直线
变动时,总有
成立?若存在,求出
的值;若不存在,说明理由.











(Ⅰ)求椭圆

(Ⅱ)是否存在常数




已知椭圆
的离心率
,过焦点且垂直于x轴的直线被椭圆截得的线段长为3
(1)求椭圆的方程;
(2)已知P为直角坐标平面内一定点,动直线l:
与椭圆交于A、B两点,当直线PA与直线PB的斜率均存在时,若直线PA与PB的斜率之和为与t无关的常数,求出所有满足条件的定点P的坐标.


(1)求椭圆的方程;
(2)已知P为直角坐标平面内一定点,动直线l:

已知椭圆C:
的离心率
,左、右焦点分别为
,抛物线
的焦点F恰好是该椭圆的一个顶点.
(1)求椭圆C的方程;
(2)已知圆M:
的切线
与椭圆相交于A、B两点,那么以AB为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由,




(1)求椭圆C的方程;
(2)已知圆M:

