刷题首页
题库
高中数学
题干
已知椭圆
的左、右顶点分别为
,长轴长为4,离心率为
.过右焦点
的直线
交椭圆
于
两点(均不与
重合),记直线
的斜率分别为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在常数
,当直线
变动时,总有
成立?若存在,求出
的值;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-30 09:12:08
答案(点此获取答案解析)
同类题1
椭圆
的左、右焦点分别为
,
,上顶点
的坐标为
,若
的内切圆的面积为
,则椭圆方程为______.
同类题2
已知椭圆
的焦点到短轴的端点的距离为
,离心率为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,过点
作平行于
轴的直线
,交直线
于点
,求证:直线
恒过定点.
同类题3
设椭圆
的两个焦点分别是
,
是椭圆上任意一点,
的周长是
.
(1)求椭圆的方程.
(2)过椭圆在
轴负半轴上的顶点
及椭圆右焦点
作一直线交椭圆于另一点
,求
的面积.
同类题4
已知椭圆
的中心在原点,焦点在
轴上,离心率等于
,它的一个顶点恰好在抛物线
的准线上.
(Ⅰ)求椭圆
的标准方程.
(Ⅱ)点
,
在椭圆上,
,
是椭圆上位于直线
两侧的动点.
(i)若直线
的斜率为
,求四边形
面积的最大值.
(ii)当
,
运动时,满足
,试问直线
的斜率是否为定值,请说明理由.
同类题5
已知椭圆
的左、右焦点分别为
,
,动点
在直线
上.若椭圆
经过点
,则椭圆
的离心率的最大值是______;此时,椭圆
的标准方程是______.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围