刷题首页
题库
高中数学
题干
已知椭圆C:
的焦距为
,且C过点
.
(1)求椭圆C的方程;
(2)设
、
分别是椭圆C的下顶点和上顶点,P是椭圆上异于
、
的任意一点,过点P作
轴于M,N为线段PM的中点,直线
与直线
交于点D,E为线段
的中点,O为坐标原点,则
是否为定值,若是,请求出定值;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-31 11:09:37
答案(点此获取答案解析)
同类题1
已知椭圆
:
的上顶点为
,且离心率为
.
(1)求椭圆
的方程;
(2)设
是曲线
上的动点,
关于
轴的对称点为
,点
,直线
与曲线
的另一个交点为
(
与
不重合),过
作直线
,垂足为
,是否存在定点
,使
为定值?若存在求出
的坐标,不存在说明理由?
同类题2
已知动直线
与焦点坐标为
,离心率为
的曲线
相交于
两点(
为曲线
的坐标原点),且
.
(1)求曲线
的标准方程;
(2)证明:
和
都为定值.
同类题3
已知点
为平面内一定点,动点
为平面内曲线
上的任意一点,且满足
,过原点的直线交曲线
于
两点.
(1)证明:直线
与直线
的斜率之积为定值;
(2)设直线
,
交直线
于
、
两点,求线段
长度的最小值.
同类题4
如图,已知椭圆
过点.
,离心率为
,左、右焦点分别为
、
.点
为直线
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
、
和
、
,
为坐标原点.
(I)求椭圆的标准方程;
(II)设直线
、
的斜线分别为
、
. 证明:
同类题5
如图,在平面直角坐标系
中,焦点在x轴上的椭圆
的右顶点和上顶点分别为
为线段
的中点,且
.
(1)求椭圆的离心率;
(2)四边形
内接于椭圆,
.记直线
的斜率分别为
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题