刷题首页
题库
高中数学
题干
记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆
,以椭圆E的焦点为顶点作相似椭圆M.
(1)求椭圆M的方程;
(2)设直线l与椭圆
交于
两点,且与椭圆
仅有一个公共点,试判断
的面积是否为定值(
为坐标原点)?若是,求出该定值;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-28 05:15:27
答案(点此获取答案解析)
同类题1
设椭圆
的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
是椭圆
上的任一点,
为圆
的任一条直径,求
的最大值.
同类题2
已知椭圆
的右焦点为
,且点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)过椭圆
上异于其顶点的任意一点
作圆
的两条切线,切点分别为
(
不在坐标轴上),若直线
在
轴,
轴上的截距分别为
,证明:
为定值.
同类题3
已知椭圆
的长轴长是短轴长的
倍,焦距为
.
(1)求椭圆的方程;
(2)已知定点
,若直线
与椭圆交于
两点.问:是否存在
的值,使以
为直径的圆过
点?请说明理由.
同类题4
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+
=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,当
时,求直线斜率的取值范围.
同类题5
已知椭圆
的长轴两端点为
,
,离心率为
,
,
分别是椭圆
的左,右焦点,且
.
(1)求椭圆的标准方程;
(2)设
,
是椭圆
上两个不同的点,若直线
在
轴上的截距为
,且
,
的斜率之和等于
,求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题