刷题首页
题库
高中数学
题干
记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆
,以椭圆E的焦点为顶点作相似椭圆M.
(1)求椭圆M的方程;
(2)设直线l与椭圆
交于
两点,且与椭圆
仅有一个公共点,试判断
的面积是否为定值(
为坐标原点)?若是,求出该定值;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-28 05:15:27
答案(点此获取答案解析)
同类题1
已知椭圆
的焦点和上顶点分别为
,定义:
为椭圆
的“特征三角形”,如果两个椭圆的特征三角形是相似三角形,那么称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比,已知点
是椭圆
的一个焦点,且
上任意一点到它的两焦点的距离之和为4
(1)若椭圆
与椭圆
相似,且
与
的相似比为2:1,求椭圆
的方程.
(2)已知点
是椭圆
上的任意一点,若点
是直线
与抛物线
异于原点的交点,证明:点
一定在双曲线
上.
(3)已知直线
,与椭圆
相似且短半轴长为
的椭圆为
,是否存在正方形
,(设其面积为
),使得
在直线
上,
在曲线
上?若存在,求出函数
的解析式及定义域;若不存在,请说明理由.
同类题2
已知椭圆
:
过点
,且离心率
.
(1)求椭圆
的方程;
(2)已知斜率为
的直线
与椭圆
交于两个不同点
,点
的坐标为
,设直线
与
的倾斜角分别为
,证明:
.
同类题3
已知椭圆
过点
,离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆的上顶点作直线
交抛物线
于
两点,
为原点.
①求证:
;
②设
、
分别与椭圆相交于
、
两点,过原点
作直线
的垂线
,垂足为
,证明:
为定值.
同类题4
如图,过抛物线M:
y
=
x
2
上一点
A
(点
A
不与原点
O
重合)作抛物线
M
的切线
AB
交
y
轴于点
B
,点
C
是抛物线M上异于点
A
的点,设
G
为△
ABC
的重心(三条中线的交点),直线
CG
交
y
轴于点
A.
(Ⅰ)设
A
(
x
0
,
x
0
2
)(
x
0
≠0),求直线
AB
的方程;
(Ⅱ)求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题