- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的长轴长为4,直线
被椭圆
截得的线段长为
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右顶点作互相垂直的两条直线
分别交椭圆
于
两点(点
不同于椭圆
的右顶点),证明:直线
过定点
.




(1)求椭圆

(2)过椭圆








如图,点F为椭圆C:
(a>b>0)的左焦点,点A,B分别为椭圆C的右顶点和上顶点,点P(
,
)在椭圆C上,且满足OP∥AB.

(1)求椭圆C的方程;
(2)若过点F的直线l交椭圆C于D,E两点(点D位于x轴上方),直线AD和AE的斜率分别为
和
,且满足
﹣
=﹣2,求直线l的方程.




(1)求椭圆C的方程;
(2)若过点F的直线l交椭圆C于D,E两点(点D位于x轴上方),直线AD和AE的斜率分别为




已知椭圆
过点
,其离心率
.
(1)求椭圆
的方程;
(2)若直线
不经过点
,且与椭圆
相交于
两点(
、
不重合),若直线
与直线
的斜率之积为
.
(ⅰ)证明:
过定点,并求出定点坐标;
(ⅱ)求
的面积的最大值.



(1)求椭圆

(2)若直线









(ⅰ)证明:

(ⅱ)求

教材曾有介绍:圆
上的点
处的切线方程为
我们将其结论推广:椭圆
的点
处的切线方程为
在解本题时可以直接应用,已知直线
与椭圆E:
有且只有一个公共点.
(1)求
的值;
(2)设O为坐标原点,过椭圆E上的两点A、B分别作该椭圆的两条切线
,且
与
交于点M
①设
,直线AB、OM的斜率分别为
,求证:
为定值;
②设
,求△OAB面积的最大值.








(1)求

(2)设O为坐标原点,过椭圆E上的两点A、B分别作该椭圆的两条切线




①设



②设

过点M(-2,0)的直线l与椭圆x2+2y2=2交于P1,P2两点,线段P1P2中点为P,设直线l的斜率为k1(k1≠0),直线OP的斜率为k2(O为原点),则k1·k2的值为________.
已知椭圆
的一个顶点为
,焦点在
轴上,其右焦点到直线
的距离为3.
(1)求椭圆
的方程;
(2)设直线
,是否存在实数
,使直线
与椭圆
有两个不同的交点
,且
,若存在,求出
的值;若不存在,请说明理由.




(1)求椭圆

(2)设直线







已知椭圆E:
(a,b>0)的焦点坐标为F1(﹣2,0),点M(﹣2,
)在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设Q(1,0),过Q点引直线l与椭圆E交于A,B两点,求线段AB中点P的轨迹方程;
(Ⅲ)O为坐标原点,⊙O的任意一条切线与椭圆E有两个交点C,D且
,求⊙O的半径.


(Ⅰ)求椭圆E的方程;
(Ⅱ)设Q(1,0),过Q点引直线l与椭圆E交于A,B两点,求线段AB中点P的轨迹方程;
(Ⅲ)O为坐标原点,⊙O的任意一条切线与椭圆E有两个交点C,D且

已知斜率为
的直线
与椭圆
交于
,
两点,线段
的中点为
.
(1)证明:
;
(2)设
为
的右焦点,
为
上一点,且
.证明:
,
,
成等差数列,并求该数列的公差.







(1)证明:

(2)设







