- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知直线
经过椭圆
的左顶点A和上顶点D,椭圆
的右顶点为
,点
为椭圆
上位于
轴上方的动点,直线
与直线
分别交于
两点.

(1)求椭圆
的方程;
(2)求证:直线AS与BS的斜率的乘积为定值;
(3)求线段MN的长度的最小值











(1)求椭圆

(2)求证:直线AS与BS的斜率的乘积为定值;
(3)求线段MN的长度的最小值
已知直线l与抛物线
交于点A,B两点,与x轴交于点M,直线OA,OB的斜率之积为
.
(1)证明:直线AB过定点;
(2)以AB为直径的圆P交x轴于E,F两点,O为坐标原点,求|OE|
|OF|的值.


(1)证明:直线AB过定点;
(2)以AB为直径的圆P交x轴于E,F两点,O为坐标原点,求|OE|

已知椭圆
上的一动点
到右焦点的最短距离为
,且右焦点到右准线的距离等于短半轴的长.
(1)求椭圆
的方程;
(2)设
是椭圆
上关于
轴对称的任意两个不同的点,连接
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(3)在(2)的条件下,过点
的直线与椭圆
交于
两点,求
的取值范围.



(1)求椭圆

(2)设









(3)在(2)的条件下,过点




如图,在平面直角坐标系
中,椭圆
的左右顶点分别是
,
为直线
上一点(
点在
轴的上方),直线
与椭圆的另一个交点为
,直线
与椭圆的另一个交点为
.
(1)若
的面积是
的面积的
,求直线
的方程;
(2)设直线
与直线
的斜率分别为
,求证:
为定值.











(1)若




(2)设直线





如图,在平面直角坐标系
中,椭圆
的左右顶点分别是
,
为直线
上一点(
点在
轴的上方),直线
与椭圆的另一个交点为
,直线
与椭圆的另一个交点为
.

(1)若
的面积是
的面积的
,求直线
的方程;
(2)设直线
与直线
的斜率分别为
,求证:
为定值;
(3)若
的延长线交直线
于点
,求线段
长度的最小值.












(1)若




(2)设直线




(3)若




已知椭圆C:
的左右顶点为A、B,右焦点为F,一条准线方程是
,短轴一端点与两焦点构成等边三角形,点P、Q为椭圆C上异于A、B的两点,点R为PQ的中点
求椭圆C的标准方程;
直线PB交直线
于点M,记直线PA的斜率为
,直线FM的斜率为
,求证:
为定值;
若
,求直线AR的斜率的取值范围.











已知椭圆C:
(
)的离心率为
,
,
,
,
的面积为1.
(1)求椭圆C的方程;
(2)斜率为2的直线与椭圆交于
、
两点
,求直线
的方程;
(3)在
轴上是否存在一点
,使得过点
的任一直线与椭圆若有两个交点
、
则都有
为定值?若存在,求出点
的坐标及相应的定值.







(1)求椭圆C的方程;
(2)斜率为2的直线与椭圆交于




(3)在







已知椭圆
的离心率为
,右焦点为
,且该椭圆过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)当动直线
与椭圆
相切于点
,且与直线
相交于点
,求证:
为直角三角形.




(Ⅰ)求椭圆

(Ⅱ)当动直线






已知椭圆
的离心率为
,且过点
.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)四边形
的顶点在椭圆上,且对角线
、
过原点
,若
,
(1)求
的最值;
(2)求证;四边形
的面积为定值.




(Ⅰ)求椭圆的标准方程;
(Ⅱ)四边形





(1)求

(2)求证;四边形
