刷题首页
题库
高中数学
题干
已知椭圆C:
的左右顶点为A、B,右焦点为F,一条准线方程是
,短轴一端点与两焦点构成等边三角形,点P、Q为椭圆C上异于A、B的两点,点R为PQ的中点
求椭圆C的标准方程;
直线PB交直线
于点M,记直线PA的斜率为
,直线FM的斜率为
,求证:
为定值;
若
,求直线AR的斜率的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-26 09:18:44
答案(点此获取答案解析)
同类题1
已知椭圆方程为
,过定点
的直线
与椭圆交于不同的两点
,
.
(1)求直线
的斜率
的取值范围;
(2)当
时,求
(
为坐标系原点)的值.
同类题2
教材曾有介绍:圆
上的点
处的切线方程为
我们将其结论推广:椭圆
的点
处的切线方程为
在解本题时可以直接应用,已知直线
与椭圆
E
:
有且只有一个公共点.
(1)求
的值;
(2)设
O
为坐标原点,过椭圆
E
上的两点
A
、
B
分别作该椭圆的两条切线
,且
与
交于点
M
①设
,直线
AB
、
OM
的斜率分别为
,求证:
为定值;
②设
,求△
OAB
面积的最大值.
同类题3
已知椭圆
的离心率为
,且过点
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)四边形
的顶点在椭圆上,且对角线
、
过原点
,若
,
(1)求
的最值;
(2)求证;四边形
的面积为定值.
同类题4
设椭圆
的短轴长为4,离心率为
.
(1)直线
与椭圆有公共点时,求实数
m
的取值范围;
(2)设点
是直线
被椭圆所截得的线段
的中点,求直线
的方程.
同类题5
设椭圆
的一个顶点与抛物线
的焦点重合,
,
分别是椭圆
的左、右焦点,离心率
,过椭圆
右焦点
的直线
与椭圆
交于
,
两点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存在直线
,使得
,若存在,求出直线
的方程;若不存在,说明理由;
(Ⅲ)设点
是一个动点,若直线
的斜率存在,且
为
中点,
,求实数
的取值范围.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
直线与椭圆的位置关系
根据直线与椭圆的位置关系求参数或范围
椭圆中的定值问题