刷题首页
题库
高中数学
题干
已知椭圆C:
的左右顶点为A、B,右焦点为F,一条准线方程是
,短轴一端点与两焦点构成等边三角形,点P、Q为椭圆C上异于A、B的两点,点R为PQ的中点
求椭圆C的标准方程;
直线PB交直线
于点M,记直线PA的斜率为
,直线FM的斜率为
,求证:
为定值;
若
,求直线AR的斜率的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-26 09:18:44
答案(点此获取答案解析)
同类题1
已知椭圆
的一个顶点为
,焦点在
轴上,其右焦点到直线
的距离为3.
(1)求椭圆
的方程;
(2)设直线
,是否存在实数
,使直线
与椭圆
有两个不同的交点
,且
,若存在,求出
的值;若不存在,请说明理由.
同类题2
已知椭圆
的左焦点为
,点
在椭圆上且在
轴的上方.若线段
的中点
在以原点
为圆心,
为半径的圆上,则直线
的斜率是( )
A.
B.
C.
D.2
同类题3
已知椭圆
,设过点
的直线
与椭圆
交于不同的两点
,且
为钝角(其中
为坐标原点),则直线
斜率的取值范围是( )
A.
B.
C.
D.
同类题4
已知椭圆
经过点
,其离心率
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设动直线
与椭圆
相切,切点为
,且
与直线
相交于点
.
试问:在
轴上是否存在一定点,使得以
为直径的圆恒过该定点?若存在,求出该点的坐标;若不存在,请说明理由.
同类题5
如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”.已知椭圆
,点
是椭圆
上的任意一点,直线
过点
且是椭圆
的“切线”.
(1)证明:过椭圆
上的点
的“切线”方程是
;
(2)设
,
是椭圆
长轴上的两个端点,点
不在坐标轴上,直线
,
分别交
轴于点
,
,过
的椭圆
的“切线”
交
轴于点
,证明:点
是线段
的中点;
(3)点
不在
轴上,记椭圆
的两个焦点分别为
和
,判断过
的椭圆
的“切线”
与直线
,
所成夹角是否相等?并说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
直线与椭圆的位置关系
根据直线与椭圆的位置关系求参数或范围
椭圆中的定值问题