刷题首页
题库
高中数学
题干
如图,在平面直角坐标系
中,椭圆
的左右顶点分别是
,
为直线
上一点(
点在
轴的上方),直线
与椭圆的另一个交点为
,直线
与椭圆的另一个交点为
.
(1)若
的面积是
的面积的
,求直线
的方程;
(2)设直线
与直线
的斜率分别为
,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-11 12:39:23
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,上顶点
到直线
的距离为3.
(1)求椭圆
的方程;
(2)设直线
过点
且与椭圆
相交于
两点,
不经过点
,证明:直线
的斜率与直线
的斜率之和为定值.
同类题2
直线
与椭圆
有两个公共点,则
m
的取值范围是( )
A.
B.
C.
D.
同类题3
动圆
M
与圆
F
1
:
x
2
+
y
2
+6
x
+5=0外切,同时与圆
F
2
:
x
2
+
y
2
﹣6
x
﹣91=0内切.
(1)求动圆圆心
M
的轨迹方程
E
,并说明它是什么曲线;
(2)若直线
y
x
+
m
与(1)中的轨迹
E
有两个不同的交点,求
m
的取值范围.
同类题4
(本小题满分14分)椭圆
(
)的左焦点为
,右焦点为
,离心率
.设动直线
与椭圆
相切于点
且交直线
于点
,
的周长为
.
(1)求椭圆
的方程;
(2)求两焦点
、
到切线
的距离之积;
(3)求证:以
为直径的圆恒过点
同类题5
已知椭圆
的左、右焦点分别为
,点
在直线
上,当
取最大值时,
______.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
直线与椭圆的位置关系
根据直线与椭圆的位置关系求参数或范围
椭圆中的定值问题