- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- + 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设椭圆
的离心率为
,且椭圆过点
.过点
作两条相互垂直的直线
分别与椭圆
交于
和
四点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若
,探究:直线
是否过定点?若是,请求出定点坐标;若不是,请说明理由.








(Ⅰ)求椭圆

(Ⅱ)若


已知椭圆
(
)的左焦点为
,点
为椭圆
上任意一点,且
的最小值为
,离心率为
.
(1)求椭圆
的方程;
(2)设O为坐标原点,若动直线
与椭圆
交于不同两点
、
(
、
都在
轴上方),且
.
(i)当
为椭圆与
轴正半轴的交点时,求直线
的方程;
(ii)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.








(1)求椭圆

(2)设O为坐标原点,若动直线








(i)当



(ii)对于动直线



已知椭圆
的离心率为
,右焦点
与抛物线
的焦点重合,左顶点为
,过
的直线交椭圆于
两点,直线
与直线
交于
两点.
(1)求椭圆
的方程;
(2)试计算
是否为定值?若是,请求出该值;若不是,请说明理由.










(1)求椭圆

(2)试计算

已知动点
与
,
两点连线的斜率之积为
,点
的轨迹为曲线
,过点
的直线交曲线
于
,
两点.
(1)求曲线
的方程;
(2)若直线
,
的斜率分别为
,
,试判断
是否为定值?若是,求出这个值;若不是,请说明理由.










(1)求曲线

(2)若直线





已知椭圆
,离心率
,它的长轴长等于圆
的直径.
(1)求椭圆
的方程;
(2)若过点
的直线
交椭圆
于
两点,是否存在定点
,使得以
为直径的圆经过这个定点,若存在,求出定点
的坐标;若不存在,请说明理由?



(1)求椭圆

(2)若过点







已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是k1,k2,且k1·k2=-
.
(1)求动点P的轨迹C的方程;
(2)已知直线l:y=kx+m与曲线C交于M,N两点,且直线BM、BN的斜率都存在,并满足kBM·kBN=-
,求证:直线l过原点.

(1)求动点P的轨迹C的方程;
(2)已知直线l:y=kx+m与曲线C交于M,N两点,且直线BM、BN的斜率都存在,并满足kBM·kBN=-

(本小题满分13分)在平面直角坐标系
中,椭圆
过点
和点
.
(1)求椭圆
的方程;
(2)已知点
在椭圆
上,
为椭圆的左焦点,直线
的方程为
.
(i)求证:直线
与椭圆
有唯一的公共点;
(ii)若点
关于直线
的对称点为
,探索:当点
在椭圆
上运动时,直线
是否过定点?若过定点,求出此定点的坐标;若不过定点,请说明理由.




(1)求椭圆

(2)已知点





(i)求证:直线


(ii)若点






(本小题满分13分)已知椭圆
:
的离心率为
,过右焦点
的直线
与
相交于
,
两点,当
的斜率为
时,坐标原点
到
的距离为
.
(1)求椭圆
的标准方程;
(2)
上是否存在点
,使得当
绕
转到某一位置时,有
成立?若存在,求出所有的
的坐标与
的方程;若不存在,说明理由,













(1)求椭圆

(2)






