- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- + 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率为
,且点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知不经过
点的直线
与椭圆
交于
两点,
关于原点的对称点为
(与点
不重合),直线
与
轴分别交于两点
,证明:
.




(Ⅰ)求椭圆

(Ⅱ)已知不经过











已知椭圆
的下焦点为
,
与短轴的两个端点构成正三角形,以
(坐标原点)为圆心,
长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)设点
为直线
上任意一点,过点
作与直线
垂直的直线
,
交椭圆
于
两点,
的中点为
,求证:
三点共线.






(1)求椭圆

(2)设点











已知椭圆
的左,右焦点分别为
,过
任作一条与两坐标轴都不垂直的直线,与
交于
两点,且
的周长为8.当直线
的斜率为
时,
与
轴垂直.
(1)求椭圆
的方程;
(2)在
轴上是否存在定点
,总能使
平分
?说明理由.










(1)求椭圆

(2)在




已知点
,
,若直线上存在点
,使得
,则称该直线为“
型直线”.给出下列直线:(1)
;(2)
;(3)
;(4)
其中所有是“
型直线”的序号为______.









