刷题宝
  • 刷题首页
题库 高中数学

题干

设椭圆的离心率为,且椭圆过点.过点作两条相互垂直的直线分别与椭圆交于和四点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若,探究:直线是否过定点?若是,请求出定点坐标;若不是,请说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2019-04-21 10:45:15

答案(点此获取答案解析)

同类题1

已知动点与,两点连线的斜率之积为,点的轨迹为曲线,过点的直线交曲线于,两点.
(1)求曲线的方程;
(2)若直线,的斜率分别为,,试判断是否为定值?若是,求出这个值;若不是,请说明理由.

同类题2

若点A,F分别是椭圆的左顶点和左焦点,过点F的直线交椭圆于M,N两点,记直线的斜率为,其满足,则直线的斜率为
A.B.C.D.

同类题3

已知点,,若直线上存在点,使得,则称该直线为“型直线”.给出下列直线:(1);(2);(3);(4)其中所有是“型直线”的序号为______.

同类题4

直线=与椭圆=的位置关系为(   )
A.相交B.相切
C.相离D.不确定
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 直线与圆锥曲线的位置关系
  • 直线与椭圆的位置关系
  • 讨论椭圆与直线的位置关系
  • 椭圆中的定值问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)