- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- + 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
图1是抛物线型拱桥,当水面在
时,拱顶离水面2米,水面宽
米,建立如下图2所示的直角坐标系,则抛物线的解析式为________;水面下降1米后,水面宽是_______米. 



抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,今有抛物线
,如图,一平行
轴的光线射向抛物线上的点
,经过抛物线的焦点
反射后射向抛物线上的点
,再反射后又沿平行
轴方向射出,若两平行光线间的最小距离为6,则此抛物线的方程为_______.







河道上有一抛物线型拱桥,在正常水位时,拱圈最高点距水面 8m,拱圈内水面宽 24m,一条船在水面以上部分高 6.5m,船顶部宽6m.

(1)试建立适当的直角坐标系,求拱桥所在的抛物线的标准方程;
(2)近日水位暴涨了1.54m,为此,必须加重船载,降低船身,才能通过桥洞,试问:船身至少应该降低多少? (精确到0.1m)

(1)试建立适当的直角坐标系,求拱桥所在的抛物线的标准方程;
(2)近日水位暴涨了1.54m,为此,必须加重船载,降低船身,才能通过桥洞,试问:船身至少应该降低多少? (精确到0.1m)
如图,在底面半径和高均为
的圆锥中,
、
是底面圆
的两条互相垂直的直径,
是母线
的中点.已知过
与
的平面与圆锥侧面的交线是以
为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点
的距离等于( )












A.![]() | B.![]() | C.![]() | D.![]() |
图中是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.
(1)试如图所示建立坐标系,求这条抛物线的方程;
(2)当水下降1米后,水面宽多少?
(1)试如图所示建立坐标系,求这条抛物线的方程;
(2)当水下降1米后,水面宽多少?

已知抛物线
:
的焦点为
,准线为
,
与
轴的交点为
,点
在抛物线
上,过点
作
于点
,如图1.已知
,且四边形
的面积为
.


(1)求抛物线
的方程;
(2)若正方形
的三个顶点
,
,
都在抛物线
上(如图2),求正方形
面积的最小值.

















(1)求抛物线

(2)若正方形






如图为一个抛物线形拱桥,当水面经过抛物线的焦点时,水面的宽度为
,则此时欲经过桥洞的一艘宽
的货船,其船体两侧的货物距离水面的最大高度应不超过( )




A.![]() | B.![]() | C.![]() | D.![]() |