- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- + 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
在平行于
轴的直线
上,且
与
轴的交点为
,动点
满足
平行于
轴,且
.
(1)求出
点的轨迹方程.
(2)设点
,
,求
的最小值,并写出此时
点的坐标.
(3)过点
的直线与
点的轨迹交于
.
两点,求证
.
两点的横坐标乘积为定值.










(1)求出

(2)设点




(3)过点





