- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系
中,点
是曲线
上的动点,
到点
的距离与
到直线
的距离相等.
(Ⅰ)求曲线
的方程;
(Ⅱ)设
是曲线
上的点,点
在曲线
上,直线
分别与
轴交于点
,且
,求直线
的斜率.







(Ⅰ)求曲线

(Ⅱ)设









已知抛物线
的焦点为
,过点
且斜率为
的直线
交曲线
于
两点,交圆
于
两点(
两点相邻).
(Ⅰ)若
,当
时,求
的取值范围;
(Ⅱ)过
两点分别作曲线
的切线
,两切线交于点
,求
与
面积之积的最小值.










(Ⅰ)若



(Ⅱ)过






已知抛物线C:y2=4x的焦点为F,准线为l.若射线y=2(x-1)(x≤1)与C,l分别交于P,Q两点,则
=( )

A.![]() | B.2 |
C.![]() | D.5 |