- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线的定义
- 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线y2=2px(p>0)的焦点为F,抛物线上的两个动点A,B始终满足∠AFB=60°,过弦AB的中点H作抛物线的准线的垂线HN,垂足为N,则
的取值范围为

A.(0,![]() | B.[![]() |
C.[1,+∞) | D.(0,1] |
已知动点
到定直线
:
的距离比到定点
的距离大2.
(1)求动点
的轨迹
的方程;
(2)在
轴正半轴上,是否存在某个确定的点
,过该点的动直线
与曲线
交于
,
两点,使得
为定值.如果存在,求出点
坐标;如果不存在,请说明理由.




(1)求动点


(2)在







