- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求双曲线的离心率或离心率的取值范围
- 双曲线离心率大小与双曲线形状的关系
- 根据离心率求双曲线的标准方程
- 求共离心率的双曲线的标准方程
- 由双曲线的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知双曲线
的离心率为2,过右焦点且垂直于
轴的直线与双曲线交于
两点. 设
到双曲线的同一条渐近线的距离分别为
和
,且
,则双曲线的方程为______.







已知点
是抛物线
的对称轴与准线的交点,点
为抛物线的焦点,点
在抛物线上且满足
,若
取最大值时,点
恰好在以
为焦点的双曲线上,则双曲线的离心率为( )








A.![]() | B.![]() | C.![]() | D.![]() |
已知
,
是椭圆
与双曲线
共同的焦点,椭圆的一个短轴端点为
,直线
与双曲线的一条渐近线平行,椭圆
与双曲线
的离心率分别为
,
,则
取值范围为( )











A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
,双曲线
.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,设椭圆M的离心率为
,双曲线N的离心率为
,则
为( )





A.![]() | B.![]() | C.![]() | D.![]() |
已知双曲线
(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是( )

A.![]() | B.(1,2), | C.![]() | D.![]() |
设F为双曲线C:
(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为

A.![]() | B.![]() |
C.2 | D.![]() |