- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 根据a、b、c求双曲线的标准方程
- 根据双曲线过的点求标准方程
- 求双曲线的轨迹方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知双曲线
:
,当双曲线
的焦距取得最小值时,其右焦点恰为抛物线
:
的焦点、若
、
是抛物线
上两点,
,则
中点的横坐标为( )










A.![]() | B.2 | C.![]() | D.3 |
我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处所截得两几何体的截面积恒等,那么这两个几何体的体积相等.已知焦点在x轴上的双曲线C的离心率e=
,焦点到其渐近线的距离为2.直线y=0与y=2在第一象限内与双曲线C及其渐近线围成如图所示的图形OABN,则它绕y轴旋转一圈所得几何体的体积为___________.

已知双曲线
的渐近线方程为
,一个焦点为
.

(1)求双曲线
的方程;
(2)过双曲线
上的任意一点
,分别作这两条渐近线的平行线与这两条渐近线得到四边形
,证明四边形
的面积是一个定值;
(3)设直线
与
在第一象限内与渐近线
所围成的三角形
绕着
轴旋转一周所得几何体的体积.




(1)求双曲线

(2)过双曲线




(3)设直线





