- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 根据a、b、c求双曲线的标准方程
- 根据双曲线过的点求标准方程
- 求双曲线的轨迹方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系xOy中,已知椭圆C的方程为
,设AB是过椭圆C中心O的任意弦,l是线段AB的垂直平分线,M是l上与O不重合的点.

(1)求以椭圆的焦点为顶点,顶点为焦点的双曲线方程;
(2)若
,当点A在椭圆C上运动时,求点M的轨迹方程;
(3)记M是l与椭圆C的交点,若直线AB的方程为
,当
面积取最小值时,求直线AB的方程;


(1)求以椭圆的焦点为顶点,顶点为焦点的双曲线方程;
(2)若

(3)记M是l与椭圆C的交点,若直线AB的方程为


已知
为直角坐标系的坐标原点,双曲线
上有一点
(m>0),点P在轴上的射影恰好是双曲线C的右焦点,过点P作双曲线C两条渐近线的平行线,与两条渐近线的交点分别为A,B,若平行四边形PAOB的面积为1,则双曲线的标准方程是( )



A.![]() | B.![]() | C.![]() | D.![]() |
已知双曲线
的左、右顶点分别是
,双曲线的右焦点
为
,点
在过
且垂直于
轴的直线
上,当
的外接圆面积达到最小时,点
恰好在双曲线上,则该双曲线的方程为( )










A.![]() | B.![]() |
C.![]() | D.![]() |
求满足下列条件的椭圆或双曲线的标准方程:
(1)椭圆的焦点在y轴上,焦距为4,且经过点A(3,2);
(2)双曲线的焦点在x轴上,右焦点为F,过F作重直于x轴的直线交双曲线于A,B两点,且|AB|=3,离心率为
.
(1)椭圆的焦点在y轴上,焦距为4,且经过点A(3,2);
(2)双曲线的焦点在x轴上,右焦点为F,过F作重直于x轴的直线交双曲线于A,B两点,且|AB|=3,离心率为
