- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 双曲线定义的理解
- 利用双曲线定义求方程
- + 利用双曲线定义求点到焦点的距离及最值
- 利用定义解决双曲线中焦点三角形问题
- 利用定义求双曲线中线段和、差的最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设双曲线的方程为
,若双曲线的渐近线被圆
:
所截得的两条弦长之和为
,已知
的顶点
,
分别为双曲线的左、右焦点,顶点
在双曲线的右支上,则
的值为( )










A.![]() | B.![]() | C.![]() | D.![]() |
如图,若F1,F2是双曲线
的两个焦点.

(1)若双曲线上一点M到它的一个焦点的距离等于7,求点M到另一个焦点的距离;
(2)若P是双曲线左支上的点,且
,求
的面积.


(1)若双曲线上一点M到它的一个焦点的距离等于7,求点M到另一个焦点的距离;
(2)若P是双曲线左支上的点,且


在平面直角坐标系
中,已知双曲线
.
(1)设F是C的左焦点,M是C右支上一点. 若|MF|=2
,求过M点的坐标;
(2)过C的左顶点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的
面积;
(3)设斜率为
的直线l2交C于P、Q两点,若l与圆
相切,
求证:OP⊥OQ;


(1)设F是C的左焦点,M是C右支上一点. 若|MF|=2

(2)过C的左顶点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的
面积;
(3)设斜率为


求证:OP⊥OQ;